Molar mass of H₂ = 1.008 × 2 g/mol = 2.016 g/mol <span>
Molar mass of I₂ =
126.9 × 2 g/mol = 253.8 g/mol </span><span>
Molar mass of HI = (1.008 + 126.9) g/mol = 127.9 g/mol
H₂(g) + I₂(g) → 2HI </span><span>
Mole ratio H₂ : I₂ : HI = 1 : 1 : 2 </span><span>
Then the initial number of moles of H₂ = (3.35 g) / (2.016 g/mol) = 1.662 mol </span><span>
Initial number of moles of I₂ = (50.75 g) / (253.8 g/mol) = 0.2000 mol <
1.662 mol </span><span>
Hence, I₂ is the
limiting reactant (limiting reagent). </span><span>
Number of moles of I₂ reacted = 0.2000 mol </span><span>
Number of moles of HI reacted = (0.2000 mol) × 2 = 0.4000 mol
<span>Mass of HI reacted = (127.9 g/mol) × (0.4000 mol) = 51.16 g</span></span>
The uniform acceleration of the car is 4.485 m/s².
<h3>
Acceleration of the car</h3>
The uniform acceleration of the car is calculated as follows;
v² = u² + 2as
a = (v² - u²)/2s
where;
- v is final velocity = 41 m/s
- u is initial velocity = 28 m/s
- s is distance = 100 m
- a is acceleration = ?
a = (41² - 28²)/(2 x 100)
a = 4.485 m/s²
Thus, the uniform acceleration of the car is 4.485 m/s².
Learn more about uniform acceleration here: brainly.com/question/2505743
#SPJ1
Answer:The higher up an object is the greater its gravitational potential energy. The larger the distance something falls through the greater the amount of GPE the object loses as it falls. As most of this GPE gets changed into kinetic energy, the higher up the object starts from the faster it will be falling when it hits the ground. So a change in gravitational potential energy depends on the height an object moves through.
Explanation: Lifting an apple up 1 metre is easier work than lifting an apple tree the same height. This is because a tree has more mass, so it needs to be given more gravitational potential energy to reach the same height.
Answer:
7800 J
Explanation:
Heat needed = mass of copper x specific heat of copper x change in temperature
Change in temperature = 30ºC - 20ºC = 10ºC
Specific heat of copper = 390 J/kgºC
Mass of copper = 2 Kg
Substituting the given values in above equation, we get –
Heat needed = 2 Kg x 390 J/kgºC x 10ºC
= 7800 J