An arrow which shows the direction that the probe should be moving in order for it to enter the orbit is X.
<h3>What is an orbit?</h3>
An orbit can be defined as the curved path through which a astronomical (celestial) object such as planet Earth, in space move around a Moon, Sun, planet or star.
In this scenario, if the scientists want the probe to enter the orbit they should ensure that probe moves in direction X. This ultimately implies that, the probe must move in the same direction as the orbit, in order to enter it.
Read more on orbit here: brainly.com/question/18496962
#SPJ1
To solve this problem we will apply the concepts related to the Doppler effect. The Doppler effect is the change in the perceived frequency of any wave movement when the emitter, or focus of waves, and the receiver, or observer, move relative to each other. Mathematically it can be described as,

Here,
= Frequency of Source
= Speed of sound
f = Frequency heard before slowing down
f' = Frequency heard after slowing down
v = Speed of the train before slowing down
So if the speed of the train after slowing down will be v/2, we can do a system equation of 2x2 at the two moments, then,
The first equation is,



Now the second expression will be,



Dividing the two expression we have,

Solving for v, we have,

Therefore the speed of the train before and after slowing down is 22.12m/s
Explanation:
a. moving a 145 kg aluminum sculpture across a horizontal steel platform
b. pulling a 15 kg steel sword across a horizontal steel shield
c. pushing a 250 kg wood bed on a horizontal wood floor
d. sliding a 0.55 kg glass amulet on a horizontal glass display case
Answer: 50 gram superball that strikes the wall at 1 m/s and bounces away at 0.8 m/s has greater change in kinetic energy.
Explanation:
50 gram superball that strikes the wall at 1 m/s and bounces away at 0.8 m/s has the greater change in kinetic energy because the collision is elastic in nature that is bodies separates after collision and doesn't lose any kinetic energy.
Also for an elastic collision, both the momentum and energy of the bodies are conserved compare to inelastic collision where only momentum is conserved but not the kinetic energy(this is attributed to bodies that sticks together after collision).
Answer:
He is wrong!
Explanation:
Frequency refers to how many wave lengths pass in a second and speed is how fast the wave is traveling for example the speed of light goes really fast but has a mid-level frequency.
Hope this helps! ;-)