The strong nuclear force is one of the four fundamental forces in nature; the other three are gravity, electromagnetism and the weak force.
As its name implies, the strong force is the strongest force of the four. It is responsible for binding together the fundamental particles of matter to form larger particles.
Explanation:
Since, it is shown that the reaction has been reversed. Therefore, value of
will become
.
Hence, new 
= 
= 20
Also, the number of moles of each reactant has been halved. So,
for the reaction
will also get halved.
Therefore,
=
= 
= 4.47
As the value of
is given as +39.0 kJ. So, it means that the reaction is endothermic in nature. So, energy of reactants will be more than the products. Hence, according to Le Chatelier's principle reaction will move in the forward direction.
As a result,
will also increase with increase in temperature.
For the given molecule, we are asked to give-
- The electron configuration of an isolated B atom
- The electron configuration of an isolated F atom
- Hybrid orbitals should be constructed on the B atom to make the B–F bonds in Boron tri flouride
- valence orbitals, if any, remain unhybridized on the B atom.
- The electron configuration of an isolated B atom:
as atomic number of B is 5
electronic configuration will be [He] 2s² 2p¹
- The electron configuration of an isolated F atom:
as atomic number of F is 9
electronic configuration will be [He] 2s² 2p5
- Hybrid orbitals should be constructed on the B atom to make the B–F bonds in Boron tri flouride will be sp2.
as the one s and two of p orbital from the valance shell will hybridised to make 3 hybrid orbital of B resulting in 3 B-F bonds.
- valence orbitals, if any, remain unhybridized on the B atom will be 1
To know more about hybrisisation:
brainly.com/question/23038117
#SPJ4
Stoichiometry <span>of the reaction:
</span><span>2 KClO</span>₃<span> = 2 KCl + 3 O</span>₂
↓ ↓
2 mole KClO₃ ----------> 3 mole O₂
2 mole KClO₃ ----------> ?
KClO₃ = 2 * 3 / 2
KClO₃ = 6 / 2
= 3 moles de KClO₃
hope this helps!
Answer:
here:
Explanation:
The changes in temperature caused by a reaction, combined with the values of the specific heat and the mass of the reacting system, makes it possible to determine the heat of reaction.
Heat energy can be measured by observing how the temperature of a known mass of water (or other substance) changes when heat is added or removed. This is basically how most heats of reaction are determined. The reaction is carried out in some insulated container, where the heat absorbed or evolved by the reaction causes the temperature of the contents to change. This temperature change is measured and the amount of heat that caused the change is calculated by multiplying the temperature change by the heat capacity of the system.
The apparatus used to measure the temperature change for a reacting system is called a calorimeter (that is, a calorie meter). The science of using such a device and the data obtained with it is called calorimetry. The design of a calorimeter is not standard and different calorimeters are used for the amount of precision required. One very simple design used in many general chemistry labs is the styrofoam "coffee cup" calorimeter, which usually consists of two nested styrofoam cups.
When a reaction occurs at constant pressure inside a Styrofoam coffee-cup calorimeter, the enthalpy change involves heat, and little heat is lost to the lab (or gained from it). If the reaction evolves heat, for example, very nearly all of it stays inside the calorimeter, the amount of heat absorbed or evolved by the reaction is calculated.