Answer:
Tea is getting hot on the stove.
2) As the tea and water gets hot, some combined molecules of tea and water will escape from the teapot.
3) Those escaped molecules now have the entire free space of the entire room to float around in, which they do (because they have high kinetic energy due to being heated).
4) Hence, in this scenario, your nose will detect a few of those molecules and you smell hot or warm tea.
5) Cold tea would be a different story. Cold beverages like cold tea do not have the kinetic energy where molecules can 'break free' of the surrounding container. Someone could be sitting in the room having a can or bottle of cold tea and you would not notice that when you walked in the door.
Answer:
Khud karo warna teacher ko bata don ga
Explanation:
18. <span>Answer is </span>
A<span>
<span>Since the enthalpy of reaction is positive, the
forward reaction is<span> an endothermic reaction which means the energy
is gained from the surrounding to happen the reaction. If the temperature
decreases, according to the </span></span>Le Chatelier's principle, the system tries to become equilibrium
by increasing temperature. Since forward reaction is endothermic (because of
the bond breaking), the backward reaction is exothermic (because of the bond
making) which releases the energy to the surroundings. This makes the increase
of temperature. So if the backward reaction is promoted because of the decrease
of temperature, then the concentration of H</span><span>₂ will decrease.</span>
<span>
</span>
19. Answer is A.
The reactant side
has 2 moles/molecules of reactants and the product side has 4 moles/molecules
of products which come from 1 N₂(g) and 3 H₂<span>(g). If the pressure is reduced in the system, according to the Le Chatelier's principle, the
system tries to increase the pressure. </span><span>Hence, forward
reaction is promoted because of the higher number
of molecules in product side. If the forward reaction is promoted, the
concentration of NH</span>₃(g) will decreased.
<span>20. </span>Answer is C.
If the concentration
of reactant is increased in the
system, according to the Le Chatelier's principle, the system tries
to reduce the concentration of that reactant. So if NH₃(g) concentration
is increased, then to be equilibrium, the forward reaction will be promoted.
Then the concentration of N₂<span>(g) will increase.</span>
<span> </span>
Answer:
See Explanation
Explanation:
A decreasing temperature indicates that the dissolution process for the ammonium chloride requires input of energy from surroundings. That is, the process is essentially 2 parts => system (object of interest - NH₄Cl) and the surroundings (everything else - solvent - H₂O). The surroundings (water) solvent is showing a <u>measured</u> decrease in temperature or loss of energy (exothermic to surroundings) which flows into the system (NH₄Cl) and effects dissolution of salt into solution (endothermic to system).