Here we have perfectly inelastic collision. Perfectly inelastic collision is type of collision during which two objects collide, stay connected and momentum is conserved. Formula used for conservation of momentum is:

In case of perfectly inelastic collision v'1 and v'2 are same.
We are given information:
m₁=0.5kg
m₂=0.8kg
v₁=3m/s
v₂=2m/s
v'₁=v'₂=x
0.5*3 + 0.8*2 = 0.5*x + 0.8*x
1.5 + 1.6 = 1.3x
3.1 = 1.3x
x = 2.4 m/s
Answer:
Explanation:
Let magnetic force F acts towards right and the string makes an angle of θ with the vertical in equilibrium .Let T be tension in equilibrium
T cos θ = mg
T sin θ = F
Dividing
Tan θ = F / mg
F = mg Tanθ
= 51.5 x 9.8 x 10⁻³ x 26 / 20.8 Tanθ = 26 / 20.8 )
= 630.875 X 10⁻³ N
Answer: - 7500N
Explanation:
Given the following :
Initial Velocity of car = 108km/hr
Time taken to stop after applying brakes = 4s
Mass of passengers in car = 1000kg
Force exerted by the brakes on the car =?
After 4s, then final Velocity (V) = 0
Initial Velocity (u) of the car = 108km/hr
108km/hr = (108 × 1000)m ÷ (3600)s = 30m/s
Force exerted = mass(m) × acceleration(a)
Acceleration of car = Change in Velocity with time
a = (v - u) / t
a = (0 - 30) / 4
a = - 30/ 4
a = - 7.5m/s^2
Therefore,
Force exerted = mass(m) × acceleration(a)
Force exerted = 1000kg × (-7.5)m/s^2
Force exerted = - 7500N
It would be 5,400N. I hope this helps!