<h3>
Answer:</h3>
225 meters
<h3>
Explanation:</h3>
Acceleration is the rate of change in velocity of an object in motion.
In our case we are given;
Acceleration, a = 2.0 m/s²
Time, t = 15 s
We are required to find the length of the slope;
Assuming the student started at rest, then the initial velocity, V₀ is Zero.
<h3>Step 1: Calculate the final velocity, Vf</h3>
Using the equation of linear motion;
Vf = V₀ + at
Therefore;
Vf = 0 + (2 × 15)
= 30 m/s
Thus, the final velocity of the student is 30 m/s
<h3>Step 2: Calculate the length (displacement) of the slope </h3>
Using the other equation of linear motion;
S = 0.5 at + V₀t
We can calculate the length, S of the slope
That is;
S = (0.5 × 2 × 15² ) - (0 × 15)
= 225 m
Therefore, the length of the slope is 225 m
A boiling pot of water (the water travels in a current throughout the pot), a hot air balloon (hot air rises, making the balloon rise) , and cup of a steaming, hot liquid (hot air rises, creating steam) are all situations where convection occurs.
Read more on Brainly.com -
brainly.com/question/1581851#readmore
Well,
1.} book
2.} computer
3.} desk
4.} chair
5.} pencil
6.} eraser
7.} dry erase board
8.} ruler
9.} calculator
10.} TV
and etc
Not necessarily, object A could also be neutral, and becoming a dipole due to object B's charge. A charged object can induce a dipole in a neutral object, and that object would then become attracted without being charged.
The force of impact is same for both bus and the bicycle. The acceleration of bicycle will be greater than the acceleration of bus.
<u>Explanation:</u>
The interaction that occurs between two objects refers to collision. this makes the two objects to come in contact with each other. The third law of Newton states that, when there occurs a collision between two objects, then the force that is applied on each object will be same. But, the direct in which the force is impacted will be in opposite direction.
The magnitude of the forces will be equal but the direction will not be same. The collision results in gaining the momentum by one object and losing momentum by another. The acceleration is mainly associated with the mass of the object. When the object has smaller mass, it will be accelerated more. In the given example, as bus is heavier than bicycle, the bicycle will have greater acceleration than the bus.