Answer:
2*10^-<em>5</em>
Explanation:
<em>B=</em><em>I</em><em>L</em>
<em>I=</em><em>B</em><em>/</em><em>L</em>
<em>I=</em><em>0</em><em>.</em><em>0</em><em>0</em><em>2</em><em>0</em><em>*</em><em>1</em><em>0</em><em>^</em><em>-</em><em>4</em><em>/</em><em>1</em><em>0</em>
<em>I=</em><em>2</em><em>*</em><em>1</em><em>0</em><em>^</em><em>5</em>
F=ma, so 100=m×10. Solve for m by dividing by 10. The mass is 10 kg.
Answer:
the previous correct answer is b
Explanation:
When the circuit is closed in the system, a current is induced that follows the lenz law, which opposes the change that is occurring and therefore the coil increases and the idicidal current in the ring must reach the maximum oppositing is the current of the coil, so quiet force is repulsion
Consequently, the previous correct answer is b
<span>To know if there were other factors that affected the volume of a gas, Genaris and her classmates should: </span>"formulate a new hypothesis with the same dependent variable but a different independent variable as the original hypothesis." In this case, the dependent variable is the volume of the gas and the new independent variable is a factor they think will affect the volume of the gas.
Answer:
4.58×10²³ atoms
5.94×10⁻²¹ J
1340 m/s
Explanation:
Use ideal gas law to find moles of gas.
PV = nRT
(1.266 atm × 101300 Pa/atm) (4/3 π (0.15 m)³) = n (8.31451 J/mol/K) (14 + 273) K
n = 0.760 mol
Use Avogadro's number to find number of atoms.
(0.760 mol) (6.02214×10²³ atom/mol) = 4.58×10²³ atoms
Average kinetic energy per molecule is:
KE = 3/2 kT
KE = 3/2 (1.38066×10⁻²³ J/K) (14 + 273) K
KE = 5.94×10⁻²¹ J
RMS speed of each atom is:
KE = 1/2 mv²
5.94×10⁻²¹ J/atom = 1/2 (0.004 kg/mol) (1 mol / 6.02214×10²³ atom) v²
v = 1340 m/s