Answer:
V_{a} - V_{b} = 89.3
Explanation:
The electric potential is defined by
= - ∫ E .ds
In this case the electric field is in the direction and the points (ds) are also in the direction and therefore the angle is zero and the scalar product is reduced to the algebraic product.
V_{b} - V_{a} = - ∫ E ds
We substitute
V_{b} - V_{a} = - ∫ (α + β/ y²) dy
We integrate
V_{b} - V_{a} = - α y + β / y
We evaluate between the lower limit A 2 cm = 0.02 m and the upper limit B 3 cm = 0.03 m
V_{b} - V_{a} = - α (0.03 - 0.02) + β (1 / 0.03 - 1 / 0.02)
V_{b} - V_{a} = - 600 0.01 + 5 (-16.67) = -6 - 83.33
V_{b} - V_{a} = - 89.3 V
As they ask us the reverse case
V_{b} - V_{a} = - V_{b} - V_{a}
V_{a} - V_{b} = 89.3
Answer:
When in free fall, the only force acting upon your body is the force of gravity - a non-contact force. Since the force of gravity cannot be felt without any other opposing forces, you would have no sensation of it. You would feel weightless when in a state of free fall.
Answer:
Explanation:18kt alloy contains
i) 75% of gold
rhogold=19.3g/cm^3
=75/100×19.3
=14.475g/cm^3
ii) 16% of silver
rhosilver=10.5g/cm^3
=16/100×10.5
=1.68g/cm^3
iii) 9% of copper
rhocopper =8.90g/cm^3
=9/100×8.9
=0.801g/cm^3
Overall density of 18kt gold
=(0.801+1.68+14.475)g/cm^3
=16.956g/cm^3
=17g/cm^3 to 3s.f
On mars people would way less.
An example of this is that if I weighed 700 pounds (I don't by the way) I would then weigh 500 pounds or less.
Answer:
q = 8.61 10⁻¹¹ m
charge does not depend on the distance between the two ships.
it is a very small charge value so it should be easy to create in each one
Explanation:
In this exercise we have two forces in balance: the electric force and the gravitational force
F_e -F_g = 0
F_e = F_g
Since the gravitational force is always attractive, the electric force must be repulsive, which implies that the electric charge in the two ships must be of the same sign.
Let's write Coulomb's law and gravitational attraction
In the exercise, indicate that the two ships are identical, therefore the masses of the ships are the same and we will place the same charge on each one.
k q² = G m²
q =
m
we substitute
q =
m
q =
m
q = 0.861 10⁻¹⁰ m
q = 8.61 10⁻¹¹ m
This amount of charge does not depend on the distance between the two ships.
It is also proportional to the mass of the ships with the proportionality factor found.
Suppose the ships have a mass of m = 1000 kg, let's find the cargo
q = 8.61 10⁻¹¹ 10³
q = 8.61 10⁻⁸ C
this is a very small charge value so it should be easy to create in each one