<h3><u>Answer</u>;</h3>
≈ 5 Kgm²/sec
<h3><u>Explanation</u>;</h3>
Angular momentum is given by the formula
L = Iω, where I is the moment of inertia and ω is the angular speed.
I = mr², where m is the mass and r is the radius
= 0.65 × 0.7²
= 0.3185
Angular speed, ω = v/r
= (2 × 3.142 × r × 2.5) r
= 15.71
Therefore;
Angular momentum = Iω
= 0.3185 × 15.71
= 5.003635
<u>≈ 5 Kgm²/sec</u>
Answer:
v ’= v + v₀
a system can be another vehicle moving in the opposite direction.
Explanation:
In an inertial reference frame the speed of the vehicle is given by the Galileo transformational
v ’= v - v₀
where v 'is the speed with respect to the mobile system, which moves with constant speed, v is the speed with respect to the fixed system and vo is the speed of the mobile system.
The vehicle's speedometer measures the harvest of a fixed system on earth, in this system v decreases, for a system where v 'increases it has to be a system in which the mobile system moves in the negative direction of the x axis, whereby the transformation ratio is
v ’= v + v₀
Such a system can be another vehicle moving in the opposite direction.
There's only one question there.
The answer is "Greater amplitude".
Answer:
2) c) give-way vessel
3) a) With one short blast
Explanation:
2) A vessel that is required to take early substantial action to ensure avoiding collision called Give way vessel
In overtaking, the vessel intending to overtake is the Give-Way Vessel the vessel that is going to be overtaken is the Stand-On Vessel
Therefore, the correct option is c) give-way vessel
3) When vessels use sound signals in a meeting head on situation both vessel are Give-Way vessels and both vessel pass the each other by turning to the starboard side therefore they intend to pass each other on their port side requiring one short blast
Therefore, the correct option is a) With one short blast.
Savanna regions developed during the Triassic period. is true