1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bezimeni [28]
3 years ago
7

As the captain of the scientific team sent to Planet Physics, one of your tasks is to measure g. You have a long, thin wire labe

led 1.01g/m and a 1.30kg weight. You have your accurate space cadet chronometer but, unfortunately, you seem to have forgotten a meter stick. Undeterred, you first find the midpoint of the wire by folding it in half. You then attach one end of the wire to the wall of your laboratory, stretch it horizontally to pass over a pulley at the midpoint of the wire, then tie the 1.30kg weight to the end hanging over the pulley. By vibrating the wire, and measuring time with your chronometer, you find that the wire's second harmonic frequency is 200Hz . Next, with the 1.30kg weight still tied to one end of the wire, you attach the other end to the ceiling to make a pendulum. You find that the pendulum requires 316s to complete 100 oscillations. Pulling out your trusty calculator, you get to work. What value of g will you report back to headquarters?
Physics
1 answer:
spin [16.1K]3 years ago
6 0

Answer:

1.19 m/s²

Explanation:

The frequency of the wave generated in the string in the first experiment is f = n/2l√T/μ were T = tension in string = mg were m = 1.30 kg weight = 1300 g , μ = mass per unit length of string = 1.01 g/m. l = length of string to pulley = l₀/2 were l₀ = lent of string. Since f is the second harmonic, n = 2, so

f = 2/2(l₀/2)√mg/μ = 2(√mg/μ)/l₀    (1)

Also, for the second experiment, the period of the wave in the string is T = 2π√l₀/g. From (1) l₀ = 2(√mg/μ)/f and from (2) l₀ = T²g/4π²

Equating (1) and (2) we ave

2(√mg/μ)/f = T²g/4π²

Making g subject of the formula

g = 2π√(2√(m/μ)/f)/T

The period T = 316 s/100 = 3.16 s

Substituting the other values into , we have

g = 2π√(2√(1300 g/1.01 g/m)/200 Hz)/3.16

g = 2π√(2 × 35.877/200 Hz)/3.16

g = 2π√(71.753/200 Hz)/3.16

g = 2π√(0.358)/3.16

g = 2π × 0.599/3.16

g = 1.19 m/s²

You might be interested in
Helppp pls yes or no question
svp [43]

Answer:

yes, should be

Explanation:

This is a hard yes or no question becuase the amplitudes are the same height but in different beating orders.

7 0
3 years ago
Read 2 more answers
What is the mass of an object that is hanging 12.6 m above the surface of the earth and has a
satela [25.4K]

Answer:

22.05 Kg

Explanation:

Apply the formula:

GPE = Gravity . Mass . ΔHigh

2778.3 = 10 . Mass . 12.6

2778.3 = 126 . Mass

Mass = 2778.3/126

Mass = 22.05

7 0
3 years ago
1. Which word or phrase best describes entropy?
Mama L [17]
The answer to this question is:

D) Disorder
7 0
4 years ago
Read 2 more answers
A key falls from a bridge that is 45 m above the water. the key falls straight down and lands in a model boat traveling at a con
erastova [34]

Let the key is free falling, therefore from equation of motion

h = ut +\frac{1}{2}gt^2..

Take initial velocity, u=0, so

h = 0\times t + \frac{1}{2}g t^2= \frac{1}{2}gt^2.

h = 0\times t + \frac{1}{2}g t^2= \frac{1}{2}gt^2 \\\ t =\sqrt{\frac{2h}{g} }

As velocity moves with constant velocity of 3.5 m/s, therefore we can use formula

d= v \times t

From above substituting t,

d = v \times \sqrt{\frac{2h}{g} }.

Now substituting all the given values and g = 9.8 m/s^2, we get

d = 3.5 \ m/s \times \sqrt{\frac{2 \times 45 m}{9.8 m/s^2} } = 10.60 m.

Thus, the distance the boat was from the point of impact when the key was released is 10.60 m.

7 0
3 years ago
Ok, so this question is probably really easy but I can't really be bothered to answer it, terrible I know, but I thank all usefu
Dvinal [7]
Without a bulb energy cant go through and it would be an open circuit blocking the energy from coming out.
3 0
3 years ago
Other questions:
  • When you push on an object such as a wrench, a steel pry bar, or even the outer edge of a door, you produce a torque equal to th
    10·1 answer
  • Calculate the mag-netic field (magnitude and direc-tion) at a point p due to a current i=12.0 a in the wire shown in fig. p28.68
    10·1 answer
  • Two electric motors drive two elevators of equal mass in a three-story building 10 meters tall. each elevator has a mass of 1,00
    5·2 answers
  • Convert 11 ppm into a percent
    11·1 answer
  • A uniformly charged ring of radius 10.0 cm has a total charge of 71.0 μC. Find the electric field on the axis of the ring at the
    11·1 answer
  • A pendulum has 665 j of potential energy at the highest point of its swing. How much kinetic energy will it have at the bottom o
    10·2 answers
  • A powerful motorcycle can produce an acceleration of 3.50 m/s2 while traveling at 90.0 km/h. At that speed, the forces resisting
    15·1 answer
  • What is the magnitude of the resultant vector? Round your answer to the nearest tenth.
    7·2 answers
  • 1. How much force would you have to apply to a 15kg object in order to accelerate it!<br> a 2 m/s?
    8·1 answer
  • A vehicle of mass 100kg has a kinetic energy of 5000 J at an instant. The velocity at that instant is​
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!