With constant angular acceleration
, the disk achieves an angular velocity
at time
according to

and angular displacement
according to

a. So after 1.00 s, having rotated 21.0 rad, it must have undergone an acceleration of

b. Under constant acceleration, the average angular velocity is equivalent to

where
and
are the final and initial angular velocities, respectively. Then

c. After 1.00 s, the disk has instantaneous angular velocity

d. During the next 1.00 s, the disk will start moving with the angular velocity
equal to the one found in part (c). Ignoring the 21.0 rad it had rotated in the first 1.00 s interval, the disk will rotate by angle
according to

which would be equal to

Explanation:
A) Use Hooke's law to find the spring constant.
F = kx
40 N = k (0.4 m)
k = 100 N/m
B) Period of a spring-mass system is:
T = 2π √(m / k)
T = 2π √(2.6 kg / 100 N/m)
T = 1 s
Frequency is the inverse of period.
f = 1 / T
f = 1 Hz
Answer:
a) The current density ,J = 2.05×10^-5
b) The drift velocity Vd= 1.51×10^-15
Explanation:
The equation for the current density and drift velocity is given by:
J = i/A = (ne)×Vd
Where i= current
A = Are
Vd = drift velocity
e = charge ,q= 1.602 ×10^-19C
n = volume
Given: i = 5.8×10^-10A
Raduis,r = 3mm= 3.0×10^-3m
n = 8.49×10^28m^3
a) Current density, J =( 5.8×10^-10)/[3.142(3.0×10^-3)^2]
J = (5.8×10^-10) /(2.83×10^-5)
J = 2.05 ×10^-5
b) Drift velocity, Vd = J/ (ne)
Vd = (2.05×10^-5)/ (8.49×10^28)(1.602×10^-19)
Vd = (2.05×10^-5)/(1.36 ×10^10)
Vd = 1.51× 10^-5
Answer:
temperature and mass
Explanation:
- The higher the temperature of a given quantity of a substance, more is its thermal energy.
- If a substance contains more mass, this also implies that the object has more particles in it . hence, it has high thermal energy.
<em><u>A</u></em><em><u>d</u></em><em><u>d</u></em><em><u>i</u></em><em><u>t</u></em><em><u>i</u></em><em><u>o</u></em><em><u>n</u></em><em><u>a</u></em><em><u>l</u></em><em><u> </u></em><em><u>I</u></em><em><u>n</u></em><em><u>f</u></em><em><u>o</u></em><em><u>r</u></em><em><u>m</u></em><em><u>a</u></em><em><u>t</u></em><em><u>i</u></em><em><u>o</u></em><em><u>n</u></em><em><u> </u></em>:
- Temperature is a measure of the average kinetic energy of the particles of a substance.
- The thermal energy of an object depends on three factors:
- number of molecules in the object
- temperature of the object.
- thermal energy it has.
This equation is one of the most useful in classical physics. It is a concise statement of Isaac Newton's<span> Second Law of Motion, holding both the proportions and vectors of the Second Law. It translates as: The net force on an object is </span>equal<span> to the </span>mass<span>of the object multiplied by the </span>acceleration<span> of the object.</span>