Answer: Mendeleev arranged the elements in his periodic table in <em>order of increasing atomic mass.</em> In the modern periodic table, elements are arranged <em>in order of increasing atomic number</em>
From conservation of momentum, the ram force can be calculated similarly to rocket thrust:
F = d(mv)/dt = vdm/dt.
<span>In other words, the force needed to decelerate the wind equals the force that would be needed to produce it.
</span><span> v = 120/3.6 = 33.33 m/s
</span><span> dm/dt = v*area*density
</span> dm/dt = (33.33)*((45)*(75))*(1.3)
dm/dt = <span>
146235.375 </span><span>kg/s
</span><span> F = v^2*area*density
</span> F = (33.33)^2*((45)*(75))*(1.3) = <span>
<span>4874025 </span></span><span>N
</span> This differs by a factor of 2 from Bernoulli's equation, which relates velocity and pressure difference in reference not to a head-on collision of the fluid with a surface but to a fluid moving tangentially to the surface. Also, a typical mass-based drag equation, like Bernoulli's equation, has a coefficient of 1/2; however, it refers to a body moving through a fluid, where the fluid encountered by the body is not stopped relative to the body (i.e., brought up to its speed) like is the case in this problem.
Answer:
h≅ 58 m
Explanation:
GIVEN:
mass of rocket M= 62,000 kg
fuel consumption rate = 150 kg/s
velocity of exhaust gases v= 6000 m/s
Now thrust = rate of fuel consumption×velocity of exhaust gases
=6000 × 150 = 900000 N
now to need calculate time t = amount of fuel consumed÷ rate
= 744/150= 4.96 sec
applying newton's law
M×a= thrust - Mg
62000 a=900000- 62000×9.8
acceleration a= 4.71 m/s^2
its height after 744 kg of its total fuel load has been consumed


h= 58.012 m
h≅ 58 m
Explanation:
1 mega Hertz = 1000000 hertz
Answer:
the average reaction time is 0.25 seconds.