Answer:
1.) Frequency F = 890.9 Hz
2.) Wavelength (λ) = 0.893 m
Explanation:
1.) Given that the wavelength = 0.385m
The speed of sound = 343 m / s
To predict the frequency, let us use the formula V = F λ
Where (λ) = wavelength = 0.385m
343 = F × 0.385
F = 343/0.385
F = 890.9 Hz
2.) Given that the frequency = 384Hz
Using the formula again
V = F λ
λ = V/F
Wavelength (λ) = 343/384
Wavelength (λ) = 0.893 m
The two questions can be solved with the use of formula
Answer:
B
Explanation:
Because this oscillations occur when the restoring force is directly proportional to displacement, given as
F=-kx
Where k= force constant
X= displacement
Solution :-
Given :
Distance 1 = 30 km
Distance 2 = 70 km
We know that speed = distance/time
and, Average speed = total distance/total time taken
When the train acquired a speed of 30 km/hr, the time taken = 30/30 = 1 hour
Average speed = 9distance 1 + distance 2)/(time 1 + time 2)
AS time 2 or t2 is time taken for the second part of the journey of 70 km
⇒ 40 = 100/(1 + t2)
⇒ 40 + 40t2 = 100
⇒ 40t2 = 100 - 40
⇒ 40t2 = 60
⇒ t2 = 60/40
⇒ t2 = 1.5
So, t2 or time taken to travel the second part of the journey is 1.5 hours.
Speed of the second part of the journey = distance 2/time 2
⇒ 70/1.5
⇒ 46.666 km/hr or 46.7 km/hr.
Hence the answer is = 46.666 km/hr or 46.7 km/hr.
Hope it helped u if yes mark me BRAINLIEST!
Tysm!
:)
Answer:
temperature change is 262.06°K
Explanation:
given data
mass = 0.07 kg
velocity = 258 m/s
to find out
what is its temperature change
solution
we know here
heat change Q is is equal to kinetic energy that is
KE = 0.5 × m× v² ...........1
here m is mass and v is velocity
KE = 0.5 × 0.07 × 258²
KE = 2329.74 J
and we know
Q = mC∆t .................2
here m is mass and ∆t is change in temperature and C is 127J/kg-K
so put here all value
2329.74 = 0.07 × 127 × ∆t
∆t = 262.06
so temperature change is 262.06°K