<span>rutherfordium element # 104</span>
Answer:
Molar mass→ 0.930 g / 6.45×10⁻³ mol = 144.15 g/mol
Explanation:
Let's apply the formula for freezing point depression:
ΔT = Kf . m
ΔT = 74.2°C - 73.4°C → 0.8°C
Difference between the freezing T° of pure solvent and freezing T° of solution
Kf = Cryoscopic constant → 5.5°C/m
So, if we replace in the formula
ΔT = Kf . m → ΔT / Kf = m
0.8°C / 5.5 m/°C = m → 0.0516 mol/kg
These are the moles in 1 kg of solvent so let's find out the moles in our mass of solvent which is 0.125 kg
0.0516 mol/kg . 0.125 kg = 6.45×10⁻³ moles. Now we can determine the molar mass:
Molar mass (mol/kg) → 0.930 g / 6.45×10⁻³ mol = 144.15 g/mol
Answer:
A. Reference blank
B. Cuvettes
C. Transmittance
D. Absorbance
E. Wavelength
Explanation:
A reference blank is a sample prepared using the solvent and any other chemicals in the sample solutions, but not the absorbing substance.
A square-shaped container, typically made of quartz, designed to hold samples in a spectrophotometer is known as Cuvettes.
A measurement of the amount of light that passes through a sample or percentage of light transmitted by the sample, with the respective intensities of the incident and transmitted beams is called Transmittance.
The measurement of the amount of light taken in by a sample is known as Absorbance
The wavelength is also the distance travelled by the wave during a period of oscillation. In spectrophotometry, the unit is inversely proportional to energy and commonly measured in nanometers