Answer:
6.24 x 10-3 M
Explanation:
Hello,
In this case, for the given dissociation, we have the following equilibrium expression in terms of the law of mass action:
![Ka=\frac{[H_3O^+][BrO^-]}{[HBrO]}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%5BH_3O%5E%2B%5D%5BBrO%5E-%5D%7D%7B%5BHBrO%5D%7D)
Of course, water is excluded as it is liquid and the concentration of aqueous species should be considered only. In such a way, in terms of the change
, we rewrite the expression considering an ICE table and the initial concentration of HBrO that is 0.749 M:

Thus, we obtain a quadratic equation whose solution is:

Clearly, the solution is 0.00624 M as no negative concentrations are allowed, so the concentration of BrO⁻ is 6.24 x 10-3 M.
Best regards.
ANSWER IS CONDUCTION. HOPE THIS HELPED!
If you remove thermal heat from the reaction the reaction will slow down. meaning that there will be fewer collisions occurring between the particles.
<span />
Answer:
There are 6.022×1023 molecules in a mole. There are 18.01528 grams of water per mole of water. in 1g water
Explanation:
please Mark my answer in brainlist