1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vlada-n [284]
3 years ago
7

Which of the following are true about S waves

Physics
1 answer:
shusha [124]3 years ago
6 0

Answer:

3. they can travel through solids

4. they move rock at right angles to the direction of wave travel

Explanation:

  • S waves are called transverse waves they have the ability to move past the solids. They cannot move through the liquids, these waves are perpendicular to the direction of travel.  
  • They are also called longitudinal waves, the ad is second to record on the seismograph as they slowly pass through the rocks. They have a speed of 3.4 to 7.2 km as per the boundary.
You might be interested in
This object is located 13.0 cm to the left of the lens and the image forms at 20.8 cm to the right of the lens.
Alina [70]

Answer:

0.125 cm

Explanation:

1/f = 1/d¡ + 1/d。

Find the focal point

(13.0^-1 + 20.8^-1) = 0.125 m

Focal point = 0.125 m  

6 0
2 years ago
Read 2 more answers
A 0.20 kg mass is oscillating at a small angle from a light string with a period of 0.78 s.
Scorpion4ik [409]

Answer:

L = 15 cm

Explanation:

T = 2π√(L/g)

L = g(T/2π)²

L = 9.8(0.78/2π)²

L = 0.151027... m

L = 15 cm

7 0
3 years ago
Read 2 more answers
Assume that block A which has a mass of 30 kg is being pushed to the left with a force of 75 N along a frictionless surface. Wha
Veronika [31]

Answer:

The force of friction acting on block B is approximately 26.7N.  Note: this result does not match any value from your multiple choice list. Please see comment at the end of this answer.  

Explanation:

The acting force F=75N pushes block A into acceleration to the left. Through a kinetic friction force, block B also accelerates to the left, however, the maximum of the friction force (which is unknown) makes block B accelerate by 0.5 m/s^2 slower than the block A, hence appearing it to accelerate with 0.5 m/s^2 to the right relative to the block A.

To solve this problem, start with setting up the net force equations for both block A and B:

F_{Anet} = m_A\cdot a_A = F - F_{fr}\\F_{Bnet} = m_B\cdot a_B = F_{fr}

where forces acting to the left are positive and those acting to the right are negative. The friction force F_fr in the first equation  is due to A acting on B and in the second equation due to B acting on A. They are opposite in direction but have the same magnitude (Newton's third law). We also know that B accelerates 0.5 slower than A:

a_B = a_A-0.5 \frac{m}{s^2}

Now we can solve the system of 3 equations for a_A, a_B and finally for F_fr:

30kg\cdot a_A = 75N - F_{fr}\\24kg\cdot a_B = F_{fr}\\a_B= a_A-0.5 \frac{m}{s^2}\\\implies \\a_A=\frac{87}{54}\frac{m}{s^2},\,\,\,a_B=\frac{10}{9}\frac{m}{s^2}\\F_{fr} = 24kg \cdot \frac{10}{9}\frac{m}{s^2}=\frac{80}{3}kg\frac{m}{s^2}\approx 26.7N

The force of friction acting on block B is approximately 26.7N.

This answer has been verified by multiple people and is correct for the provided values in your question. I recommend double-checking the text of your question for any typos and letting us know in the comments section.

6 0
3 years ago
Read 2 more answers
a foul ball is hit into the stands at a baseball game. the ball rises to a height of 38 meters and is caught on its way down by
lisov135 [29]

The velocity of the ball when it was caught is 12.52 m/s.

<em>"Your question is not complete it seems to be missing the following, information"</em>,

find the velocity of the ball when it was caught.

The given parameters;

maximum height above the ground reached by the ball, H = 38 m

height above the ground where the ball was caught, h = 30 m

The height traveled by the ball when it was caught is calculated as follows;

y = H - h

y = 38 - 30 = 8 m

The velocity of the ball when it was caught is calculated as;

v_f^2 = v_0 + 2gh\\\\v_f^2 = 0 + (2\times 9.8 \times 8)\\\\v_f^2 = 156.8\\\\v_f = \sqrt{156.8} \\\\v_f = 12.52 \ m/s

Thus, the velocity of the ball when it was caught is 12.52 m/s.

Learn more here: brainly.com/question/14582703

4 0
3 years ago
Think of a famous person and gather information about him/her​
dybincka [34]

Abraham Lincoln

Explanation:

hope it helps you a little

4 0
3 years ago
Other questions:
  • What kind of change is it when a liquid turns into a gas by boiling????????????????????
    13·1 answer
  • Action-reaction forces : Select one:
    12·1 answer
  • In an incompressible three-dimensional flow field, the velocity components are given by u = ax + byz; υ = cy + dxz. Determine th
    14·1 answer
  • I NEED HELP PLEASE THANKS :)
    12·1 answer
  • Carbon-14 has a half-life of 5,700 years. How long will it take for 6.25% of the Carbon-14 to be remaining?
    10·1 answer
  • Which of the following characteristics are displayed by hard magnetic materials?
    9·1 answer
  • you’ve just been involved in a traffic accident that leaves you stranded on the side of the road. Which part of the EM spectrum
    14·1 answer
  • The atomic number of yttrium is 39. The atomic mass of one of its isotopes is 89. How many neutrons are in an atom of this isoto
    10·1 answer
  • Fan object moves in uniform circular motion in a circle of radius R=200 meters, and the objectes 5.00 seconds to
    12·1 answer
  • 4) A drag racer starts her car from rest and accelerates at 10.0 m/s² for a distance of 400 m (1/4 mile). (a) How long did it ta
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!