•THAT THE PROPAGATION OF SOUND WAVES NEED MEDIUM TO TRAVEL
•THE MEDIUM SHOULD POSSES ELASTICITY
•FOR THE FASTER PROPAGATION OF SOUND THE PARTICLES SHOULD BE VERY CLOSE TO EACH OTHER
Answer:
W = 0.060 J
v_2 = 0.18 m/s
Explanation:
solution:
for the spring:
W = 1/2*k*x_1^2 - 1/2*k*x_2^2
x_1 = -0.025 m and x_2 = 0
W = 1/2*k*x_1^2 = 1/2*(250 N/m)(-0.028m)^2
W = 0.060 J
the work-energy theorem,
W_tot = K_2 - K_1 = ΔK
with K = 1/2*m*v^2
v_2 = √2*W/m
v_2 = 0.18 m/s
You didn't actually include the speed of sound. But it doesn't matter for this question. If the trumpeter and the listener are on the same moving sidewalk then the distance between them is not changing. The Doppler shift only happens when the distance between the source and the Observer is changing. So the Listener hears the same 290 Hertz that the trumpeter is generating.
In order to create a magnifier in convex lens, you should choose a short focal length that is lesser than 1 meter.
<h3>What is a
convex lens?</h3>
A convex lens is also referred to as converging lens and it can be defined as a type of lens that typically causes parallel rays of light with respect to its principal axis to come to a focus (converge) and form a real image.
In Science, a magnifier refer to an optical instrument that allow us to look at a very near object because its image is generally formed farther away. Thus, the image of the object appears to be much larger.
In this context, you should choose a short focal length that is lesser than 1 meter when you want to create a magnifier in convex lens because the nearer the object is to the lens, the larger would be the image formed.
Read more on convex lens here: brainly.com/question/10153605