1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
notsponge [240]
3 years ago
11

A point charge q1 = 1.0 µC is at the origin and a point charge q2 = 6.0 µC is on the x axis at x = 1 m.

Physics
1 answer:
iris [78.8K]3 years ago
6 0

To solve this problem we will apply the concepts related to the Electrostatic Force given by Coulomb's law. This force can be mathematically described as

F = \frac{kq_1q_2}{d^2}

Here

k = Coulomb's Constant

q_{1,2} = Charge of each object

d = Distance

Our values are given as,

q_1 = 1 \mu C

q_2 = 6 \mu C

d = 1 m

k =  9*10^9 Nm^2/C^2

a) The electric force on charge q_2 is

F_{12} = \frac{ (9*10^9 Nm^2/C^2)(1*10^{-6} C)(6*10^{-6} C)}{(1 m)^2}

F_{12} = 54 mN

Force is positive i.e. repulsive

b) As the force exerted on q_2 will be equal to that act on q_1,

F_{21} = F_{12}

F_{21} = 54 mN

Force is positive i.e. repulsive

c) If q_2 = -6 \mu C, a negative sign will be introduced into the expression above i.e.

F_{12} = \frac{(9*10^9 Nm^2/C^2)(1*10^{-6} C)(-6*10^{-6} C)}{(1 m)^{2}}

F_{12} = F_{21} = -54 mN

Force is negative i.e. attractive

You might be interested in
50 points !! I need help asap.......Consider a 2-kg bowling ball sits on top of a building that is 40 meters tall. It falls to t
r-ruslan [8.4K]

1) At the top of the building, the ball has more potential energy

2) When the ball is halfway through the fall, the potential energy and the kinetic energy are equal

3) Before hitting the ground, the ball has more kinetic energy

4) The potential energy at the top of the building is 784 J

5) The potential energy halfway through the fall is 392 J

6) The kinetic energy halfway through the fall is 392 J

7) The kinetic energy just before hitting the ground is 784 J

Explanation:

1)

The potential energy of an object is given by

PE=mgh

where

m is the mass

g is the acceleration of gravity

h is the height relative to the ground

While the kinetic energy is given by

KE=\frac{1}{2}mv^2

where v is the speed of the object

When the ball is sitting on the top of the building, we have

  • h=40 m, therefore the potential energy is not zero
  • v=0, since the ball is at rest, therefore the kinetic energy is zero

This means that the ball has more potential energy than kinetic energy.

2)

When the ball is halfway through the fall, the height is

h=20 m

So, half of its initial height. This also means that the potential energy is now half of the potential energy at the top (because potential energy is directly proportional to the height).

The total mechanical energy of the ball, which is conserved, is the sum of potential and kinetic energy:

E=PE+KE=const.

At the top of the building,

E=PE_{top}

While halfway through the fall,

PE_{half}=\frac{PE_{top}}{2}=\frac{E}{2}

And the mechanical energy is

E=PE_{half} + KE_{half} = \frac{PE_{top}}{2}+KE_{half}=\frac{E}{2}+KE_{half}

which means

KE_{half}=\frac{E}{2}

So, when the ball is halfway through the fall, the potential energy and the kinetic energy are equal, and they are both half of the total energy.

3)

Just before the ball hits the ground, the situation is the following:

  • The height of the ball relative to the ground is now zero: h=0. This means that the potential energy of the ball is zero: PE=0
  • The kinetic  energy, instead, is not zero: in fact, the ball has gained speed during the fall, so v\neq 0, and therefore the kinetic energy is not zero

Therefore, just before the ball hits the ground, it has more kinetic energy than potential energy.

4)

The potential energy of the ball as it sits on top of the building is given by

PE=mgh

where:

m = 2 kg is the mass of the ball

g=9.8 m/s^2 is the acceleration of gravity

h = 40 m is the height of the building, where the ball is located

Substituting the values, we find the potential energy of the ball at the top of the building:

PE=(2)(9.8)(40)=784 J

5)

The potential energy of the ball as it is halfway through the fall is given by

PE=mgh

where:

m = 2 kg is the mass of the ball

g=9.8 m/s^2 is the acceleration of gravity

h = 20 m is the height of the ball relative to the ground

Substituting the values, we find the potential energy of the ball halfway through the fall:

PE=(2)(9.8)(20)=392 J

6)

The kinetic energy of the ball halfway through the fall is given by

KE=\frac{1}{2}mv^2

where

m = 2 kg is the mass of the ball

v = 19.8 m/s is the speed of the ball when it is halfway through the  fall

Substituting the values into the equation, we find the kinetic energy of the ball when it is halfway through the fall:

KE=\frac{1}{2}(2)(19.8)^2=392 J

We notice that halfway through the fall, half of the initial potential energy has converted into kinetic energy.

7)

The kinetic energy of the ball just before hitting the ground is given by

KE=\frac{1}{2}mv^2

where:

m = 2 kg is the mass of the ball

v = 28 m/s is the speed of the ball just before hitting the ground

Substituting the values into the equation, we find the kinetic energy of the ball just before hitting the ground:

KE=\frac{1}{2}(2)(28)^2=784 J

We notice that when the ball is about to hit the ground, all the potential energy has converted into kinetic energy.

Learn more about kinetic and potential energy:

brainly.com/question/6536722

brainly.com/question/1198647

brainly.com/question/10770261

#LearnwithBrainly

4 0
3 years ago
The legal tradition that kept women from owning property and holding public office came to the United States from
scoundrel [369]
<span>The legal tradition that kept women from owning property and holding public office came to the United States from: C. Britain.</span>
6 0
4 years ago
Read 2 more answers
An astronaut is a short distance away from her space station without a tether rope. She has a large wrench. What should she do w
Hitman42 [59]

Answer: b. Throw it directly away from the space station.

Explanation:

According to <u>Newton's third law of motion</u>, <em>when two bodies interact between them, appear equal forces and opposite senses in each of them.</em>  

To understand it better:  

Each time a body or object exerts a force on a second body or object, it (the second body) will exert a force of equal magnitude but in the opposite direction on the first.  

So, if the astronaut throws the wrench away from the space station (in the opposite direction of the space station), according to Newton's third law, she will be automatically moving towards the station and be safe.

3 0
3 years ago
Brainliest if right
mixas84 [53]
They traveling at -0.37/ms^
3 0
3 years ago
A 7.36 g sample of copper is contaminated with a additional 0.51 g sample of zinc. Suppose an atomic mass measurement was perfor
yawa3891 [41]
The molar mass of the sample is equal to the summation of the molar mass of the elementas multiplied by the abundance of the elements by mole. In this case, copper has an abundance of 93.69 percent while zinc has 6.31 percent. In this case, the average molecular weight is 63.67 g/mol
7 0
4 years ago
Other questions:
  • Is nuclear fission hybrid physics or geothermal phsics
    15·2 answers
  • What<br> is the difference between hypothesis, theory and scientific law?
    11·1 answer
  • Light can be made to have a higher intensity by raising its
    7·1 answer
  • What is the pressure amplitude for the threshold of human hearing?
    5·2 answers
  • 2. If you exert a force of 10.0 N to lift a box a distance of 0.9 m, how much work have you done?
    11·2 answers
  • A metal sphere is neutral because it has an equal number of protons and electrons. Draw how the charges in the sphere are redist
    8·2 answers
  • Consult Multiple-Concept Example 11 for background material relating to this problem. A small rubber wheel on the shaft of a bic
    7·1 answer
  • The car has a mass of 22,000Kg. Calculate the force needed to stop the car.
    7·1 answer
  • What is the amount of matter in an object is called?​
    8·2 answers
  • Your are on a boat on a lake with no current. The lake is full of sharks that will eat you if you put your hands too close to th
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!