The answer would be C. In fact, letter A already defines the Law of Definite Proportions. On the other hand, J.J. Thomson was responsible for the discovery of electrons through cathode ray tube experiments. The rest of the choices are true.
No Ag cannot react with NaOH because Ag is less reactive than Na in the reactivity series and can't displace it
1860-х годах, а кульминацией — распространение поточного производства и поточных линий. В 1860—1870-х годах технологическая революция быстро охватила Западную Европу, США, Российскую империю и Японию.
Halogens. Ex. fluorine can be the gas,bromine can be the liquid, and iodine could a solid all under room conditions.
Aromatic side chain exhibits an electronic excited state that is closer in energy to the ground state.
- In order to respond to this query, we must decide whether a peptide bond or an aromatic side chain is demonstrating an electronic exited state that is more closely related to the ground state in terms of energy.
- When our energy is as low as possible, we are in the ground state.
- What I want to point out is that if we can choose between the two options—peptide bond or aromatic side chain—without knowing the specific reasons, we can immediately rule out two potential answers.
- Consider what we already know about energy, we have:
E = h x c/λ
- That indicates that when we have more energy, a wavelength decreases. Lower energy corresponds to higher wavelength.
- Aromatic side chains absorb between 250 and 290 nm, while peptide bonds do so between 190 and 250 nm.
- According to our breakdown, we have an electron excited state that is more closely related to the ground state in terms of energy as wavelength increases.
Thus, Aromatic side chain exhibits an electronic excited state that is closer in energy to the ground state.
To view similar questions about energy, refer to:
brainly.com/question/14483627
#SPJ4