Molecule, a group of two or more atoms that form the smallest identifiable unit into which a pure substance can be divided and still retain the composition and chemical properties of that substance.
While Atoms are single neutral particles,
Molecules are neutral particles made of two or more atoms bonded together.
Exaplmes for molecules
H2O (water)
N2 (nitrogen)
O3 (ozone)
CaO (calcium oxide)
C6H12O6 (glucose, a type of sugar)
NaCl (table salt
And examples for atoms
Neon (Ne)
Hydrogen (H)
Argon (Ar)
Iron (Fe)
Calcium (Ca)
Deuterium, an isotope of hydrogen that has one proton and one neutron.
Plutonium (Pu)
F-, a fluorine anion.
Answer:
0.278 mol HCl
Explanation:
We currently have 185.0 mL of a 1.50 mol/L solution of HCl. We want to find the number of moles there are.
Based on the given information, our volume is 185.0 mL and our molarity is 1.50. Because molarity is defined as moles / Litre, we can easily find the moles given volume by multiplying molarity by volume.
First, though, we must convert millilitres to litres. There are 1000 mL in 1 L, so divide 185.0 by 1000:
185.0 / 1000 = 0.185 L
Now, multiply 0.185 by 1.50:
0.185 L * 1.50 mol/L = 0.278 mol HCl
Thus the answer is 0.278 mol HCl.
<em>~ an aesthetics lover</em>
As the warm water holds more salt then cold water the fingers cool and produce crystals of salt that soon rains down to the floor of the ocean
<h3>
Answer:</h3>
43.33 atm
<h3>
Explanation:</h3>
We are given;
Mass of C₆H₆ = 26.2 g
Volume of the container = 0.25 L
Temperature = 395 K
We are required to calculate the pressure inside the container;
First, we calculate the number of moles of C₆H₆
Molar mass of C₆H₆ = 78.1118 g/mol.
But; Moles = mass ÷ Molar mass
Moles of C₆H₆ = 26.2 g ÷ 78.1118 g/mol.
= 0.335 moles C₆H₆
Second, we calculate the pressure, using the ideal gas equation;
Using the ideal gas equation, PV = nRT , Where R is the ideal gas constant, 0.082057 L.atm/mol.K
Therefore;
P = nRT ÷ V
= (0.335 mol × 0.082057 × 395 K) ÷ 0.25 L
= 43.433 atm
Therefore, the pressure inside the container is 43.33 atm