Answer:
64 kPa
Explanation:
The pressure exerted by a force on a surface is given by

where
p is the pressure
F is the force
A is the area on which the force is exerted
In this problem, let's call:
F = the weight of the performer, which is the force
A = the area of 1 stilt
At the beginning, the performer is standing on both stilts, so the area on which he exerts pressure is 2A. So the pressure is
(1)
Later, he stands on one stilt only. The force exerted is still the same (his weight), however, the area is now reduced to A; therefore, the new pressure is

which is twice the value calculated in (1); so, the new pressure is

In a person's forties, they are in the middle of stagnation vs. identity, so they are having an identity crisis.
Answer:
Let d be the density of the water (1000 kg / m^3 eq to 1 gm / cm^3)
P = d g h for the pressure due to a column at the bottom of the column.
P = 1000 kg / m^3 * 10 m/s^2 * 10 m = 10^5 kg / m * s^2 = 10^5 N/m
Answer:
Its called PSY
Explanation: I so do not know why they named it this way but, hope i helped.
<span>Transmission electron microscope -
The transmission electron microscope uses electrons instead of light
. a light microscope is limited by the wavelength of light.
TEMs use electrons as "light source" and their much lower wavelength makes it possible to get a resolution a thousand times better than with a light microscope
.
The possibility for high magnifications has made the TEM a valuable tool in both medical, biological and materials research.</span><span>Compound light microscope
- Microscope with more than one lens and its own light source
. There are ocular lenses in the bonicular eyepieces and objective lenses in a rotating nosepiece closer to the specimen.
To ascertain the power of magnification of a compund light microscope, it's needed to take the power of the objective lens and multiply it by the eyepiece which is generally 10x.
Although sometimes found as monocular with one ocular lens, the compound binocular microscope is more commonly used today.
The first light microscope dates back to 1595, when Zacharias Jansen created a compound microscope that used collapsing tubes and produced magnifications up to 9X.
</span>