To solve this problem it is necessary to apply the concepts related to wavelength depending on the frequency and speed. Mathematically, the wavelength can be expressed as

Where,
v = Velocity
f = Frequency,
Our values are given as
L = 3.6m
v= 192m/s
f= 320Hz
Replacing we have that


The total number of 'wavelengths' that will be in the string will be subject to the total length over the size of each of these undulations, that is,



Therefore the number of wavelengths of the wave fit on the string is 6.
A rotating disc supplied with constant power where the relationship of the angular velocity of the disc and the number of rotations made by the disc is governed by Newton's second law for rotation. This law is specially made for rotating bodies which is extracted from Newton's second law of motion.
The correct answer is the last one:
A and C are different elements, while D is an isotope of C.
In fact, A and C are different elements, because they have a different number of protons in the nucleus (A has 3 protons, while C has 4 protons). Instead, D and C are the same element (they both have 4 protons in the nucleus), but they are different isotopes since they have a different number of neutrons (D has 4 neutrons while C has 3 neutrons)
Is there a question? Because All your doing t explaining a british philosopher to us..
-- Coal
-- Oil
-- Natural gas
-- Falling water
-- Sunlight
-- Nuclear fission of Uranium