The answer to the question is A
Answer:
<em>6.77m/s</em>
Explanation:
Using the law of conservation of momentum
m1u1 + m2u2 = (m1+m2)v
m1 and m2 are the masses of the object
u1 and u2 are the velocities before collision
v is the final collision
Given
m1 = 300g = 0.3kg
u1 = 6.0m/s
m2 = 10g = 0.01kg
u2 = 30m/s
Required
The bird's speed immediately after swallowing v
Substitute the given values into the formula
m1u1 + m2u2 = (m1+m2)v
0.3(6) + 0.01(30) = (0.3+0.01)v
1.8+0.3 = 0.31v
2.1 = 0.31v
v = 2.1/0.31
<em>v = 6.77m/s</em>
<em>Hence the bird's speed immediately after swallowing is 6.77m/s</em>
Answer:
1. 0 vh g
Explanation:
As air resistance is negligible, horizontal speaking, nothing is affecting the velocity. So the horizontal velocity of the projectile stays the same, vh.
As for vertical velocity, since there's always a constant gravitational acceleration acting downward, namely g, the vertical speed will decrease until it reaches the top where it is 0, it then starting to increase in magnitude, downward, due to its gravitational acceleration g.
Answer:
Explanation:
a.) hypermetropia is the reason for his problem
b.)Image is formed farther from the near point
c.) defect is corrected by convex lens