This is a classic example of conservation of energy. Assuming that there are no losses due to friction with air we'll proceed by saying that the total energy mus be conserved.

Now having information on the speed at the lowest point we can say that the energy of the system at this point is purely kinetic:

Where m is the mass of the pendulum. Because of conservation of energy, the total energy at maximum height won't change, but at this point the energy will be purely potential energy instead.

This is the part where we exploit the Energy's conservation, I'm really insisting on this fact right here but it's very very important, The totam energy Em was

It hasn't changed! So inserting this into the equation relating the total energy at the highest point we'll have:

Solving for h gives us:

It doesn't depend on mass!
Answer:
Explanation:
Ask a question that can be answered by making observations.
The silver coating on the inner bottle prevents heat transfer by radiation, and the vacuum between its double wall prevents heat moving by convection. The thinness of the glass walls stops heat entering or leaving the flask by conduction.
Answer:
6480 km
Explanation:
The speed of the object is
v = 7500 cm/sec
We need to convert centimetres into kilometers and seconds into days. We have:


Using these conversion factors, we find:
