a. 0.5 T
- The amplitude A of a simple harmonic motion is the maximum displacement of the system with respect to the equilibrium position
- The period T is the time the system takes to complete one oscillation
During a full time period T, the mass on the spring oscillates back and forth, returning to its original position. This means that the total distance covered by the mass during a period T is 4 times the amplitude (4A), because the amplitude is just half the distance between the maximum and the minimum position, and during a time period the mass goes from the maximum to the minimum, and then back to the maximum.
So, the time t that the mass takes to move through a distance of 2 A can be found by using the proportion

and solving for t we find

b. 1.25T
Now we want to know the time t that the mass takes to move through a total distance of 5 A. SInce we know that
- the mass takes a time of 1 T to cover a distance of 4A
we can set the following proportion:

And by solving for t, we find

Answer:
Pascal's law (also Pascal's principle or the principle of transmission of fluid-pressure) is a principle in fluid mechanics given by Blaise Pascal that states that a pressure change at any point in a confined incompressible fluid is transmitted throughout the fluid such that the same change occurs everywhere.
Answer:
The skater has mechanical/gravitational potential energy at the two meter mark. The skater gets to two meters high on the other end of the ramp. In terms of the conservation of energy, the skater will never go higher than two meter on the other end of the the ramp because energy can be neither created nor destroyed.
Explanation:
I hoping it is right!!!∪∧∪ ∪ω∪
Answer:
<h2>1567.09 N/m</h2>
Explanation:
Step one:
given data
mass m=5kg
compression x= 3.13cm to m= 0.0313m
<em>According to Hooke's law, provided the elastic limit of an elastic material is not exceeded the extension e is directly proportional to the applied force</em>
F=ke
where
k= spring constant in N/m
e= extension/compression in
Step two:
assume g= 9.81m/s^2
F=mg
F=5*9.81
F=49.05N
substitute in the expression F=ke
49.05=k*0.0313
k=49.05/0.0313
k=1567.09 N/m
<u>The force constant (in N/m) of the spring is 1567.09 N/m</u>