Answer:
Electric field at a distance of 1.45 cm will be 
Explanation:
We have given the distance d = 1.45 cm = 0.0145 m
And the potential difference 
There is a relation between potential difference and electric field
Electric field at a distance d due to a potential difference is given by
, here E is electric field, V is potential difference and d is distance
So 
The positively charged atmosphere attracts negatively charged spider silk, might electrostatic force play in spider dispersal, according to a recent study.
Answer: Option C
<u>Explanation:</u>
The positive charge present in upper of the atmosphere and the negative charge on planet’s surface. During cloudless skies days, the air possesses a voltage of nearly around 100 volts for each and every meter from above the ground.
Ballooning spiders process within this planetary electric field. When their silk relieve their bodies then it picks up a negative charge. This oppose the similar negative charges on the surfaces on which the spiders settles and create sufficient force to lift them into the air. And spiders can hike those forces by climbing onto blades of grass,twigs, or leaves.
Answer:
7.328m/s
Explanation:
Given parameters:
height of table = 0.68m
final velocity of the ball = 6m/s
Unknown:
Initial velocity of ball = ?
Solution:
To solve this problem, we are going to employ the appropriate motion equation.
We must understand that this fall occurs in the presence of gravity;
V = U + 2gH
Where;
V is the final velocity
U is the initial velocity
g is the acceleration due to gravity
H is the height of the pool table
Since U is the unknown, let us make it the subject of the expression;
U = V - 2gH
U = 6 - (2 x 9.8 x 0.68) = 7.328m/s(deceleration)
Explanation:
0.566kg *(1mol/0.197 kg)= 2.87 mol gold
note how the units cancel out, if the units do not cancel out (kg/kg=1) then u did something wrong