Answer:

Explanation:
Force can be found by multiplying the mass by the acceleration.

The mass of the roller coaster is 2000 kilograms and the acceleration is 2 meters per second squared.

Substitute the values into the formula.

Multiply.

- 1 kg*m/s² is equal to 1 N
- Therefore our answer of 4000 kg*m/s² is equal to 4000 Newtons

The net force acting on the roller coaster is <u>4000 Newtons.</u>
Answer:
It reveals that light is a wave
Explanation:
Diffraction is the property of a wave in which there is a bending of the wave about the corners of an obstacle or aperture into the geometrical shadow of the obstacle or aperture.
This simply implies that a wave bends or spreads out when it passes through openings. Since the light diffracts through small slits and diffraction has been shown to occur in water waves and sound waves, this property of diffraction can only be characteristic of a wave and thus, this evidence reveals that light is a wave.
To develop this problem it is necessary to apply the concepts given in the balance of forces for the tangential force and the centripetal force. An easy way to detail this problem is through a free body diagram that describes the behavior of the body and the forces to which it is subject.
PART A) Normal Force.


Here,
Normal reaction of the ring is N and velocity of the ring is v




PART B) Acceleration





Negative symbol indicates deceleration.
<em>NOTE: For the problem, the graph in which the turning radius and the angle of suspension was specified was not supplied. A graphic that matches the description given by the problem is attached.</em>
Answer:
we learned that an object that is vibrating is acted upon by a restoring force. The restoring force causes the vibrating object to slow down as it moves away from the equilibrium position and to speed up as it approaches the equilibrium position. It is this restoring force that is responsible for the vibration. So what forces act upon a pendulum bob? And what is the restoring force for a pendulum? There are two dominant forces acting upon a pendulum bob at all times during the course of its motion. There is the force of gravity that acts downward upon the bob. It results from the Earth's mass attracting the mass of the bob. And there is a tension force acting upward and towards the pivot point of the pendulum. The tension force results from the string pulling upon the bob of the pendulum. In our discussion, we will ignore the influence of air resistance - a third force that always opposes the motion of the bob as it swings to and fro. The air resistance force is relatively weak compared to the two dominant forces.
The gravity force is highly predictable; it is always in the same direction (down) and always of the same magnitude - mass*9.8 N/kg. The tension force is considerably less predictable. Both its direction and its magnitude change as the bob swings to and fro. The direction of the tension force is always towards the pivot point. So as the bob swings to the left of its equilibrium position, the tension force is at an angle - directed upwards and to the right. And as the bob swings to the right of its equilibrium position, the tension is directed upwards and to the left. The diagram below depicts the direction of these two forces at five different positions over the course of the pendulum's path.
that's what I know so far
Answer:
For areas marked X, Y, Z, X is attractive only, Y has a very small range, and Z is attractive and repulsive
Explanation:
Solution
Given that:
From the question stated, Anna drew a diagram to compare forces that are strong and weak.
Now,
We are to find which labels are grouped in areas marked as X, Y, Z respectively.
Thus,
For X, Y, Z it is marked as:
X: Always attractive or attractive only
Y: Very small range
Z: Repulsive and attractive