The moment of inertia of the flywheel is 2.63 kg-
It is given that,
The maximum energy stored on the flywheel is given as
E=3.7MJ= 3.7×
J
Angular velocity of the flywheel is 16000
= 1675.51
So to find the moment of inertia of the flywheel. The energy of a flywheel in rotational kinematics is given by :
E = 

By rearranging the equation:
I = 
I = 2.63 kg-
Thus the moment of inertia of the flywheel is 2.63 kg-
.
Learn more about moment of inertia here;
brainly.com/question/13449336
#SPJ4
4. 1 and 2 only.
1. the downward force is the force of gravity.
<span>2. The upward force exerted is the Normal reaction from the floor.</span>
Answer:
The force is the same
Explanation:
The force per meter exerted between two wires carrying a current is given by the formula

where
is the vacuum permeability
is the current in the 1st wire
is the current in the 2nd wire
r is the separation between the wires
In this problem

Substituting, we find the force per unit length on the two wires:

However, the formula is the same for the two wires: this means that the force per meter exerted on the two wires is the same.
The same conclusion comes out from Newton's third law of motion, which states that when an object A exerts a force on an object B, then object B exerts an equal and opposite force on object A (action-reaction). If we apply the law to this situation, we see that the force exerted by wire 1 on wire 2 is the same as the force exerted by wire 2 on wire 1 (however the direction is opposite).
Answer:
1 B. Convert v from km/min to m/s ( show work and units
Answer: work must be done on the system (Option A)
Explanation:
The second law of thermodynamics is the fundamental law of nature; it states that energy can be transferred from cold objects to hot objects only, if work is done on the system. If energy is added to the system then as a result the thermal energy would increase. Second law of thermodynamics is used to determine whether a process is spontaneous or not. Moreover,the second law of thermodynamics is also used in refrigerators.