Answer:b. gravitational, kinetic, thermal
Explanation:
The above explains the mechanism of the core forming process on earth/planet.
It is believed that this process might has contributed significantly to a planet's early stages heating. The time when these core-forming event happened is thought to have been mainly completed very early when Earth was young . The type of this event rather than it being seen as a single catastrophic event, it is likely to have been as a result of contractions on the earth severally.
The addition of partially differentiated material from another giant impact the rate of this spasm , and it increases each time the planet's mass is to increased.
This is a little on the history of planetary evolution.
Explanation:
Both cohesion and molecular interchange contribute to liquid viscosity. The impact of increasing the temperature of a liquid is to reduce the cohesive forces while simultaneously increasing the rate of molecular interchange. The former effect causes a decrease in the shear stress while the latter causes it to increase.
temperature?
The viscosity of liquids decreases rapidly with an increase in temperature, and the viscosity of gases increases with an increase in temperature. Thus, upon heating, liquids flow more easily, whereas gases flow more sluggishly.
mark as brainliest
Answer: what the hell does that mean
Explanation:
Answer: options B,D and F
Explanation:
Since redox reactions are those which involves both oxidation and reduction
In B , Cu is oxidized and S gets reduced
D, Na gets oxidized and hydrogen gets reduced
F, carbon gets oxidized and Oxygen gets reduced
In g, there is no change in oxidation no of s in both product and Reactants is same +4
Similarly in the case of Ag and Mg.