For idea gases, volume is directly proportional to temperature. That is, an increase in temperature leads to increase in volume and vice versa.
Therefore,
V1/T1 = V2/T2 => T2 = (V2*T1)/V1
Assuming that the balloon is spherical in shape,
V= 4/3*pi*R^3.... In the formula for calculating T2, 4/3*pi cancels out.
R1 = 30/2 15 cm; R2 = 30.5/2 = 15.25 cm; T1 = 20+273.15 =293.15 K
Therefore,
T2 = (R2^3*T1)/R1^3 = (15.25^3*293.15)/15^3 = 308.05 K = 34.9 °C
Answer:
The average velocity is 180 km/hr
Explanation:
Given;
initial velocity, u = 60 km per hour
final velocity, v = 120 km per hour
initial time = 1 hour
final time = 2 hour
Initial position = 60 km/h x 1 hour = 60 km
final position = 120 km/h x 2 hour = 240 km
The average velocity is given by;

Therefore, the average velocity is 180 km/hr
Answer:
Cost of 1000 kilowatt hour = 6000 cents
Explanation:
Given that
Electricity cost is 6 cents per kilowatt hour.
And we have to found out the cost for one megawatt hour
We know that
1 kilowatt = 1000 watt
1 megawatt = = 1000000 watt
1 megawatt = 1000 kilowatt
1 megawatt hour = 1000 kilowatt hour
Given that cost of 1 kilowatt hour = 6 cents
So the cost of 1000 kilowatt hour = 6 x 1000 cents
Cost of 1000 kilowatt hour = 6000 cents
Answer:
The bird's speed immediately after swallowing is 4.98 m/s.
Explanation:
Given that,
Mass of bird = 290 g
Speed = 6.2 m/s
Mass of sees = 9.0 g
Speed = 34 m/s
We need to calculate the bird's speed immediately after swallowing
Using conservation of momentum

Put the value into the formula



Hence, The bird's speed immediately after swallowing is 4.98 m/s.