The compression curve would be theoretically given for a system of bodies in which the spring applies the force (Although in the same way the following process can be extrapolated to any system, depending on the type of Force to consider) For a spring mass system, the strength is given by Hooke's law as

Where,
K = Spring constant
x = Displacement
If we integrate based on distance we would have

This integral represents the area under the Force Curve based on each distance segment traveled.



This is the same formula that represents the elastic potential energy of a body. Therefore the correct answer is D.
Answer:

Explanation:
<u>Accelerated Motion
</u>
It refers to the motion of objects in which velocity is not constant over time. If the change of the velocity occurs at the same rate, then we say it's uniformly accelerated. Being
= initial speed,
= final speed, a= constant acceleration, x= distance traveled
Then, the scalar relation between them is

The aircraft needs to reach a liftoff speed of 53 m/s from rest (assumed) having only 420 meters to do so. We can compute the acceleration by solving for a



Answer:
Penetration means forward passes can go through the opposition lines. Once these penetrative passes get through each line, it eliminates the line of players it broke through and leaves the player in possession closer to the opposition goal.
Explanation:
Answer:
KE=800,000
Explanation:
The formula for kinetic energy is KE=1/2mv^2 or Kinetic Energy= 0.5*mass*velocity^2
so 1000 is the mass and 40 is the velocity
KE=0.5*1000*40^2
KE=0.5*1,000*1,600
KE=800,000 Joules