Answer:
4.99 mg of vitamin C are in the beaker.
Explanation:
Given that,
Weight of vitamin = 0.0499 g
Molar mass = 176.124 g/mol
Weight of water = 100.0 ml
We need to calculate the mg of vitamin C in the beaker
We dissolve 0.0499 g vitamin C in water to from 100.0 ml solution.
100 ml solution contain 49.9 mg vitamin C
Now, we take 10 ml of this vitamin C solution in breaker
Since, 100 ml solution =49.9 mg vitamin C
Therefore,


Hence, 4.99 mg of vitamin C are in the beaker.
Potential energy is stored energy. For example, if a bowling ball is on top of a giant hill, we say it has potential energy because it has the potential to do work which is to roll down the hill.
Kinetic energy is the energy of movement so once that ball rolls down that hill, that potential energy is converted to kinetic energy.
Momentum should be conserved. The momentum of both
objects must balance with their initial and final momentum.
Let m1 and v1 be the mass and velocity of the
bowling ball
And m2 and v2 be the mass and velocity of the
bowling pin
(m1v1)i + (m2v2)i = (m1v1)f + (m2v2)f
30 kg m/s + (1.5 kg)(0 m/s) = 13kg m/s + 1.5v2f
V2f = 11.33 m/s
<span>So the momentum = 1.5 kg(11.33 m/s) = 17 kg m/s</span>
Answer:
1200 Sm^2mol^-1
Explanation:
Given data :
conductivity of water ( kwater ) = 76 mS m^-1 = 0.076 Sm^-1
conductivity of kcl (aq)( Kkcl ) = 1.1639 Sm^-1
Kkcl = 1.1639 - 0.076 = 1.0879 Sm^-1
Resistance = 33.21 Ω
where conductivity can be expressed as = 
hence cell constant = conductivity * Resistance
= 1.0879 * 33.21 = 36.13m^-1
conductivity of CH3COOH ( kCH3COOH ) = 36.13 / 300
= 0.120 Sm^-1
<u>Determine the molar conductivity of acetic acid</u>
= ( kCH3COOH * 1000 ) / C
C = 0.1 mol dm
= (0.120 * 1000) / 0.1 = 1200 Sm^2mol^-1
Answer:
if your glasses are polarized, you can see the fish in the water. also im pretty sure its d
Explanation: