1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Misha Larkins [42]
3 years ago
6

3. If you roll a ball up a hill, it undergoes positiveacceleration. True or false​

Physics
1 answer:
Jlenok [28]3 years ago
4 0

Answer:

true

Explanation:

You might be interested in
Which of the following is not an example of kinetic energy being converted to potential energy?
KengaRu [80]

The list of choices you provided with your question
is utterly devoid of any such examples.

6 0
3 years ago
Read 2 more answers
SCIENCE<3:: will give brainliest! :)
Alex777 [14]

Answer:

Option two

Explanation:

im smort

7 0
2 years ago
Read 2 more answers
A jewellery melts 500g of Silver to pour into a mould. Calculate how much energy was released as the silver solidified.
irga5000 [103]

When silver is poured into the mould the it will solidify

In this process the phase of the Silver block will change from liquid to solid.

This phase change will lead to release in heat and this heat is known as latent heat of fusion.

The formula to find the latent heat of fusion is given as

Q = mL

here given that

m = mass = 500 g

L = 111 kJ/kg

now we can find the heat released

Q = 0.5 * 111 kJ

Q = 55.5 kJ

So it will release total heat of 55.5 kJ when it will solidify

8 0
3 years ago
A car's gas tank contains 58.7 kg
Bogdan [553]

Answer:

721 kg/m^3

Explanation:

Trust me bro

8 0
3 years ago
Traumatic brain injury such as a concussion results when the head undergoes a very large acceleration. Generally an acceleration
eimsori [14]

The complete text of the problem is:

<em>"Traumatic brain injury such as concussion results when the head undergoes a very large acceleration. Generally, an acceleration less than 800 m/s2 lasting for any length of time will not cause injury, whereas an acceleration greater than 1000 m/s2 lasting for at least 1 ms will cause injury. Suppose a small child rolls off a bed that is 0.43 m above the floor. If the floor is hardwood, the child's head is brought to rest in approximately 1.8 mm. If the floor is carpeted, this stopping distance is increased to about 1.1 cm. Calculate the magnitude and duration of the deceleration in both cases, to determine the risk of injury. Assume the child remains horizontal during the fall to the floor. Note that a more complicated fall could result in a head velocity greater or less than the speed you calculate. "</em>

<em />

<u>Solution:</u>

1) Acceleration: -2336 m/s^2 on the hardwood floor, -382 m/s^2 on the carpeted floor

First of all, we need to calculate the speed of the child just before he hits the floor. This can be done by using the equation

v^2 - u^2 = 2ad

where

v is the final speed

u = 0 is the initial speed (the child starts from rest)

a = g = 9.8 m/s^2 is the acceleration of gravity

d = 0.43 m is the distance covered by the child as he falls from the bed

Solving for v,

v=\sqrt{2ad}=\sqrt{2(9.8)(0.43)}=2.9 m/s

Now we can analyze the moment of the collision. The child hits the floor with an initial speed of v = 2.9 m/s, and he comes to a stop, so the final speed is v' = 0. If the floor is hardwood, the stopping distance is

d = 1.8 mm = 0.0018 m

So we can find the acceleration by using again the equation

v'^2 - v^2 = 2ad

Solving for a,

a=\frac{v'^2 - v^2}{2d}=\frac{0-2.9^2}{2(0.0018)}=-2336 m/s^2

For the carpeted floor instead,

d=1.1 cm = 0.011 m

therefore the acceleration is

a=\frac{v'^2 - v^2}{2d}=\frac{0-2.9^2}{2(0.011)}=-382 m/s^2

2) Duration: 1.24 ms for the hardwood floor, 7.59 ms for the carpeted floor

We can find the duration of the collision in both cases by using the equation of the acceleration

a=\frac{v'-v}{t}

where

v' = 0

v = 2.9 m/s

For the hardwood floor,

a=-2336 m/s^2

So the duration of the collision is

t = \frac{v'-v}{a}=\frac{0-2.9}{-2336}=0.00124 s = 1.24 ms

For the carpeted floor,

a=-382 m/s^2

So the duration of the collision is

t = \frac{v'-v}{a}=\frac{0-2.9}{-382}=0.00759 s = 7.59 ms

We can now comment the results using the initial statement of the problem:

"Generally an acceleration less than 800 m/s2 lasting for any length of time will not cause injury, whereas an acceleration greater than 1,000 m/s2 lasting for at least 1ms will cause injury"

Therefore, the fall on the hardwood floor can result in injury (since the acceleration is greater than 1,000 m/s2 for more than 1 ms), while the fall on the carpeted floor is not dangerous (much less than 1000 m/s^2).

8 0
3 years ago
Other questions:
  • Your pencil is 11 cm long . How long is it in millimeters?
    7·1 answer
  • An object at rest requires a force of 15 newtons to set it into motion. This force is greater than which force?
    15·1 answer
  • At a baseball game, the batter hit a fly ball at time t = 0 s. The outfielder caught the ball at t = 5.8 s. When was the ball at
    9·2 answers
  • What are two types of diffraction?
    6·1 answer
  • What do you mean by magnitude of an electric field due to a point charge. State its SI unit.
    12·1 answer
  • Why do high and low tides happen 1 hour later each day? just answer please and it is a written response
    11·1 answer
  • Time Warner Cable's leadership development program that spanned over 30 days and included weekly videos, practice exercises, and
    9·1 answer
  • 4
    5·1 answer
  • What is the magnification when an object is placed at 2f from the pole of the convex mirror? 
    15·1 answer
  • What is the necessary conditions for the production of sound?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!