Contact metamorphism occurs adjacent to igneous intrusions and results from high temperatures associated with the igneous intrusion. Since only a small area surrounding the intrusion is heated by the magma, metamorphism is restricted to the zone surrounding the intrusion, called a metamorphic or contact aureole
First of all, looks like your teacher is indeed pretty horrible. Secondly, the constraints to consider would be proper weight distribution, methods to minimize excessive motion of the building structure, and quantities such as volume and density, which would help in determining the optimal structure. Keeping the frequency of oscillation for a building low in case of an earthquake or natural disaster would also be a priority.
The solution for this problem is computed by through this formula, F = kQq / d²Plugging in the given values above, we can now compute for the answer.
F = 8.98755e9N·m²/C² * -(7e-6C)² / (0.03m)² = -489N, the negative sign denotes attraction.
To solve this problem it is necessary to apply the kinematic equations of angular motion.
Torque from the rotational movement is defined as

where
I = Moment of inertia
For a disk
Angular acceleration
The angular acceleration at the same time can be defined as function of angular velocity and angular displacement (Without considering time) through the expression:

Where
Final and Initial Angular velocity
Angular acceleration
Angular displacement
Our values are given as






Using the expression of angular acceleration we can find the to then find the torque, that is,




With the expression of the acceleration found it is now necessary to replace it on the torque equation and the respective moment of inertia for the disk, so




Therefore the torque exerted on it is 