Answer:
5.88×10⁸ W
Explanation:
Power = energy / time
P = mgh / t
P = (m/t) gh
P = (1.2×10⁶ kg/s) (9.8 m/s²) (50.0 m)
P = 5.88×10⁸ W
When the body is at rest, its speed is zero, and the graph lies on the x-axis.
When the body is in uniform motion, the speed is constant, and the graph is a horizontal line, parallel to the x-axis and some distance above it.
It's impossible to tell, based on the given information, how these two parts of the
graph are connected. There must be some sloping (accelerated) portion of the graph
that joins the two sections, but it cannot be accounted for in either the statement
that the body is at rest or that it is in uniform motion, since acceleration ... that is,
any change of speed or direction ... is not 'uniform' motion'.
Answer:
19.1 deg
Explanation:
v = speed of the proton = 8 x 10⁶ m/s
B = magnitude of the magnetic field = 1.72 T
q = magnitude of charge on the proton = 1.6 x 10⁻¹⁹ C
F = magnitude of magnetic force on the proton = 7.20 x 10⁻¹³ N
θ = Angle between proton's velocity and magnetic field
magnitude of magnetic force on the proton is given as
F = q v B Sinθ
7.20 x 10⁻¹³ = (1.6 x 10⁻¹⁹) (8 x 10⁶) (1.72) Sinθ
Sinθ = 0.327
θ = 19.1 deg
An energy crisis<span> is any significant (bottleneck; logistics; or price rise) in the supply of energy resources to an economy. In popular literature, it often refers to one of the energy sources used at a certain time and place, in particular those that supply national electricity grids or those used as fuel in vehicles.</span>
Answer:

Explanation:
According to Pascal's Law, the pressure transmitted from input pedal to the output plunger must be same:

where,
F₁ = Load lifted by output plunger = 2100 N
F₂ = Force applied on input piston = 44 N
r₁ = radius of output plunger
r₂ = radius of input piston
Therefore,
