The answer is: lose electrons and form positive ions.
Most metals have strong metallic bond, because of strong electrostatic attractive force between valence electrons (metals usually have low ionization energy and lose electrons easy) and positively charged metal ions.
The ionization energy (Ei) is the minimum amount of energy required to remove the valence electron, when element lose electrons, oxidation number of element grows (oxidation process).
For example, magnesium has atomic number 12, which means it has 12 protons and 12 electrons. It lost two electrons to form magnesium cation (Mg²⁺) with stable electron configuration like closest noble gas neon (Ne) with 10 electrons.
Electron configuration of magnesium ion: ₁₂Mg²⁺ 1s² 2s² 2p⁶.
GaBr3
Gallium=Ga
Bromine= Br
Bromide=Br3
Answer:
There's a total of 8 oxygen atoms in the formula Cu3(PO4)2
Answer:
B.3/5p
Explanation:
For this question, we have to remember <u>"Dalton's Law of Partial Pressures"</u>. This law says that the pressure of the mixture would be equal to the sum of the partial pressure of each gas.
Additionally, we have a <em>proportional relationship between moles and pressure</em>. In other words, more moles indicate more pressure and vice-versa.

Where:
=Partial pressure
=Total pressure
=mole fraction
With this in mind, we can work with the moles of each compound if we want to analyze the pressure. With the molar mass of each compound we can calculate the moles:
<u>moles of hydrogen gas</u>
The molar mass of hydrogen gas (
) is 2 g/mol, so:

<u>moles of oxygen gas</u>
The molar mass of oxygen gas (
) is 32 g/mol, so:

Now, total moles are:
Total moles = 2 + 3 = 5
With this value, we can write the partial pressure expression for each gas:


So, the answer would be <u>3/5P</u>.
I hope it helps!