J. J. Thomson, who discovered the electron in 1897, proposed the plum pudding model of the atom in 1904 before the discovery of the atomic nucleus in order to include the electron in the atomic model. In Thomson's model, the atom is composed of electrons (which Thomson still called “corpuscles,” though G. J.
Answer:
Enthalpy change for the reaction is -67716 J/mol.
Explanation:
Number of moles of
in 50.0 mL of 0.100 M of 
= Number of moles of HCl in 50.0 mL of 0.100 M of HCl
=
moles
= 0.00500 moles
According to balanced equation, 1 mol of
reacts with 1 mol of HCl to form 1 mol of AgCl.
So, 0.00500 moles of
react with 0.00500 moles of HCl to form 0.00500 moles of AgCl
Total volume of solution = (50.0+50.0) mL = 100.0 mL
So, mass of solution = (
) g = 100 g
Enthalpy change for the reaction = -(heat released during reaction)/(number of moles of AgCl formed)
=
= ![\frac{-100g\times 4.18\frac{J}{g.^{0}\textrm{C}}\times [24.21-23.40]^{0}\textrm{C}}{0.00500mol}](https://tex.z-dn.net/?f=%5Cfrac%7B-100g%5Ctimes%204.18%5Cfrac%7BJ%7D%7Bg.%5E%7B0%7D%5Ctextrm%7BC%7D%7D%5Ctimes%20%5B24.21-23.40%5D%5E%7B0%7D%5Ctextrm%7BC%7D%7D%7B0.00500mol%7D)
= -67716 J/mol
[m = mass, c = specific heat capacity,
= change in temperature and negative sign is included as it is an exothermic reaction]
<span>N = +3, H = +1 ,Cl = -1
</span><span>
</span>
Answer:
we only see parts of the lit side as the moon goes around the earth
Explanation:
Unlike the sun, the moon orbits the Earth. This is the reason why we see the <em>different phases of the moon.</em> The reflection of the moon is being illuminated back to us with the help of the sun. So, as the moon circles the Earth, we only see parts of the lit side. Such changes helps us see the moon in different phases such as<em> </em>the <em>Third Quarter, Crescent, New Moon, Full Moon, etc.</em>
For example, during "Full Moon," <em>the moon's entire face is lit up by the sun</em>. Thus, we see the entire moon's lit portion.
Thus, this explains the answer.
Answer:
the stabilization of the negative charge in orbitals with higher s character
Explanation:
Acetylide anion is a carbon anion compound or popularly called carbanion. Now Acetylide anion is sp hybridized. However acetylide anion tends to be more acidic as we move from sp³ to sp, hence acidicity increases, which makes sp to have the highest acidity and become the most stable.
So, we can conclude that the acetylide anion is more acidic due to the stabilization of the negative charge in orbitals with higher s character and as the s character increases, acidic nature of acetylide anion also increases.