Nope. Just the opposite.
That's why, when you open a new bottle of soda and
let the pressure inside come down to atmospheric
pressure, some of the sparkly gas comes out of solution
and goes "hisss" out of the bottle. (If you open the bottle
too fast, then some of the soda comes out with the gas.)
Hello
The kinetic energy K of a moving object is:

where m is the mass and v the velocity of the object.
Using this formula, we can calculate v for this problem:
Momentum will be conserved in one dimension in the explosion.
<span>
Given that the fragment a acquires three
times the kinetic energy of the fragment b.
<span>
P</span><span><span>initial </span><span>= p</span></span>final ⇒ 0 =mₐv⁰ₐ+mьv⁰ь= 0 ⇒ v⁰ь = -mₐv⁰ₐ/mь
KE= 3KEь
⇒1/2 mₐv⁰ₐ² = 3 (1/2mьv⁰ь²)
</span><span>
⇒1/2 mₐv⁰ₐ² = 3/2 mь(-mₐv⁰ₐ/mь)²
⇒1/2 mₐv⁰ₐ² = 3/2 mь(mₐ²v⁰ₐ²/mь²)
</span>
⇒1/2 x 2/3 = mₐ/mь= 1/3
<span>
<span>
Thus the ratio
of the masses of the fragments is 1:3.
</span></span>
ANY force causes an object to accelerate, just as long as there are not
some other forces on the object that cancel out the first one.
Are you looking for the answer ... an "UNBALANCED" force ?
That's a very poor way to describe it, because there's no such thing
as a balanced or unbalanced force. The thing that's balanced or
unbalanced is a GROUP of forces, not a single force.
Point of correction, spring constant is 2.3×10−2 m not 2.3×10−2 m m
Answer:
28577 N/m
Explanation:
From Hooke's law, F=kx where F is force applied, k is spring constant and x is compression
F=mg=67*9.81


Approximately, 28577 N/m