1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
polet [3.4K]
3 years ago
10

The maximum Compton shift in wavelength occurs when a photon isscattered through 180^\circ .

Physics
1 answer:
vlabodo [156]3 years ago
7 0

Answer: 90\°

Explanation:

The Compton Shift \Delta \lambda in wavelength when the photons are scattered is given by the following equation:

\Delta \lambda=\lambda_{c}(1-cos\theta)     (1)

Where:

\lambda_{c}=2.43(10)^{-12} m is a constant whose value is given by \frac{h}{m_{e}c}, being h the Planck constant, m_{e} the mass of the electron and c the speed of light in vacuum.

\theta) the angle between incident phhoton and the scatered photon.

We are told the maximum Compton shift in wavelength occurs when a photon isscattered through 180\°:

\Delta \lambda_{max}=\lambda_{c}(1-cos(180\°))     (2)

\Delta \lambda_{max}=\lambda_{c}(1-(-1))    

\Delta \lambda_{max}=2\lambda_{c}     (3)

Now, let's find the angle that will produce a fourth of this maximum value found in (3):

\frac{1}{4}\Delta \lambda_{max}=\frac{1}{4}2\lambda_{c}(1-cos\theta)      (4)

\frac{1}{4}\Delta \lambda_{max}=\frac{1}{2}\lambda_{c}(1-cos\theta)      (5)

If we want \frac{1}{4}\Delta \lambda_{max}=\frac{1}{2}\lambda_{c}, 1-cos\theta   must be equal to 1:

1-cos\theta=1   (6)

Finding \theta:

1-1=cos\theta

0=cos\theta  

\theta=cos^{-1} (0)  

Finally:

\theta=90\°    This is the scattering angle that will produce \frac{1}{4}\Delta \lambda_{max}      

You might be interested in
mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released from rest from a point 2 feet below the equi
valina [46]

Answer:

The answer is

"x(t)= e^\frac{-t}{2}((\frac{-4}{3})\cos\frac{\sqrt{47}}{2}t- \frac{-64\sqrt{47}}{141} \sin\frac{\sqrt{47}}{2}t)+\frac{10}{3}(\cos(3t)+ \sin (3t))".

Explanation:

Taking into consideration a volume weight = 16 pounds originally extends a springs \frac{8}{3} feet but is extracted to resting at 2 feet beneath balance position.

The mass value is =

W=mg\\m=\frac{w}{g}\\m=\frac{16}{32}\\m= \frac{1}{2} slug\\

The source of the hooks law is stable,

16= \frac{8}{3} k \\\\8k=16 \times 3 \\\\k=16\times \frac{3}{8} \\\\k=6 \frac{lb}{ft}\\\\

Number \frac{1}{2}  times the immediate speed, i.e .. Damping force

\frac{1}{2} \frac{d^2 x}{dt^2} = -6x-\frac{1}{2}\frac{dx}{dt}+10 \cos 3t \\\\\frac{1}{2}  \frac{d^2 x}{dt^2}+ \frac{1}{2}\frac{dx}{dt}+6x =10 \cos 3t \\ \\\frac{d^2 x}{dt^2} +\frac{dx}{dt}+12x=20\cos 3t \\\\

The m^2+m+12=0 and m is an auxiliary equation,

m=\frac{-1 \pm \sqrt{1-4(12)}}{2}\\\\m=\frac{-1 \pm \sqrt{47i}}{2}\\\\\ m1= \frac{-1 + \sqrt{47i}}{2} \ \ \ \ or\ \ \ \ \  m2 =\frac{-1 - \sqrt{47i}}{2}

Therefore, additional feature

x_c (t) = e^{\frac{-t}{2}}[C_1 \cos \frac{\sqrt{47}}{2}t+ C_2 \sin \frac{\sqrt{47}}{2}t]

Use the form of uncertain coefficients to find a particular solution.  

Assume that solution equation,

x_p = Acos(3t)+B sin(3t) \\x_p'= -3A sin (3t) + 3B cos (3t)\\x_p}^{n= -9 Acos(3t) -9B sin (3t)\\

These values are replaced by equation ( 1):

\frac{d^2x}{dt}+\frac{dx}{dt}+ 12x=20 \cos(3t) -9 Acos(3t) -9B sin (3t) -3Asin(3t)+3B cos (3t) + 12A cos (3t) + 12B sin (3t)\\\\3Acos 3t + 3B sin 3t - 3Asin 3t + 3B cos 3t= 20cos(3t)\\(3A+3B)cos3t -(3A-3B)sin3t = 20 cos (3t)\\

Going to compare cos3 t and sin 3 t coefficients from both sides,  

The cost3 t is 3A + 3B= 20 coefficients  

The sin 3 t is 3B -3A = 0 coefficient  

The two equations solved:

3A+3B = 20 \\\frac{3B -3A=0}{}\\6B=20\\B= \frac{20}{6}\\B=\frac{10}{3}\\

Replace the very first equation with the meaning,

3B -3A=O\\3(\frac{10}{3})-3A =0\\A= \frac{10}{3}\\

equation is

x_p\\\\\frac{10}{3} cos (3 t) + \frac{10}{3} sin (3t)

The ultimate plan for both the equation is therefore

x(t)= e^\frac{-t}{2} (c_1 cos \frac{\sqrt{47}}{2}t)+c_2\sin\frac{\sqrt{47}}{2}t)+\frac{10}{3}\cos (3t)+\frac{10}{3}\sin (3t)

Initially, the volume of rest x(0)=2 and x'(0) is extracted by rest i.e.  

Throughout the general solution, replace initial state x(0) = 2,

Replace x'(0)=0 with a general solution in the initial condition,

x(t)= e^\frac{-t}{2} [(c_1 cos \frac{\sqrt{47}}{2}t)+c_2\sin\frac{\sqrt{47}}{2}t)+\frac{10}{3}\cos (3t)+\frac{10}{3}\sin (3t)]\\\\

x(t)= e^\frac{-t}{2} [(-\frac{\sqrt{47}}{2}c_1\sin\frac{\sqrt{47}}{2}t)+ (\frac{\sqrt{47}}{2}c_2\cos\frac{\sqrt{47}}{2}t)+c_2\cos\frac{\sqrt{47}}{2}t)  +c_1\cos\frac{\sqrt{47}}{2}t +c_2\sin\frac{\sqrt{47}}{2}t + \frac{-1}{2}e^{\frac{-t}{2}} -10 sin(3t)+10 cos(3t) \\\\

c_2=\frac{-64\sqrt{47}}{141}

x(t)= e^\frac{-t}{2}((\frac{-4}{3})\cos\frac{\sqrt{47}}{2}t- \frac{-64\sqrt{47}}{141} \sin\frac{\sqrt{47}}{2}t)+\frac{10}{3}(\cos(3t)+ \sin (3t))

5 0
3 years ago
The electric force between two charges A. increases with distance between the charges B. increases if either one of charges gets
beks73 [17]

Answer:

Option (A) , (b) and (d) are correct option

Explanation:

According to Coulomb's law electric force between two charges is given by

F=\frac{1}{4\pi \epsilon _0}\frac{q_1q_2}{r^2}

From the relation we can say that force is directly proportional to magnitude of charges and inversely proportional to distance between them '

So if we increase the distance then force will decrease

Increase if any of the charge get larger

If force is attractive then both the charge will be of different sign and is force is repulsive then both the charges of same sign

From above conclusion we can say that (a), (b) and (d) are correct option

6 0
3 years ago
Question #6a) You were told to assume that the ball bounced to a height of 1.2 m and that the distance between the bounces measu
Inessa [10]

Answer:

Explanation:

In the problem they give the case of a ball that bounces on the vertical axis the height is getting smaller, on the x axis it is the same distance all the time.

Questions about the aspect of the x-axis

- Since the distance traveled between the rebounds is the same, the speed must be the same or constant throughout the entire journey.

- Since the distance and speed are equal, the time between rebounds is the same

- There can be no acceleration because the bounce gap should change, the acceleration is zero all the time

Questions about the Y axis

- The vertical speed of the first boat would be the greatest of all, so it has the highest height

b) Evidence or not Evidence

1  evidence, because the graphs are different, one is a straight line and he gives a parable

2 no evidence, nothing involved on the x axis

3  no evidence, the acceleration on the y axis is independent of the acceleration on the x axis

4  no evidence, the time that is cast is the only change that is the same for both movements

5  evidence, the fact that no mixture of components is found allows the variable to be separated into different equations

6  no evidence, says nothing about the x-axis

4 0
3 years ago
The word “virtual” refers to something that exists in effect but not in actual fact. How does this definition relate to the virt
atroni [7]
Because you see yourself the opposite way in a mirror. So yes your “seeing” yourself but not how everyone else sees you.
8 0
2 years ago
Read 2 more answers
What is a circuit that only has one loop??
larisa86 [58]
Series :) is the answer
6 0
3 years ago
Other questions:
  • A catcher "gives" with a baseball when catching it. If the baseball exerts a force of 475 N on the glove such that the glove is
    14·1 answer
  • Fossil fuels like gasoline or coal are examples of
    7·1 answer
  • You drop two rocks. one rock has a mass of 8kg and the other a mass of 7kg. The 8kg rock falls no faster than the 7kg rock for w
    8·1 answer
  • A "swing" ride at a carnival consists of chairs that are swung in a circle by 19.6 m cables attached to a vertical rotating pole
    8·2 answers
  • How many hydrogen atoms are in water, H2O?
    11·1 answer
  • Which of the following best describes a magnetic field? a region around a magnet in which you can measure magnetic forces. a mea
    11·2 answers
  • La luz roja visible tiene una longitud de onda de 680 nanómetros (6,8 x 10-7 m). La velocidad de la luz es de 3.0 x108 m / s. ¿C
    7·1 answer
  • An object moves at constant speed in a circle. Which of the following is true:
    14·1 answer
  • If correct will give brailiest
    6·2 answers
  • A proton moves a distance 10 cm in a uniform electric field of 3.5 kN C, in the direction of the field.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!