Answer:
160 kg
12 m/s
Explanation:
= Mass of first car = 120 kg
= Mass of second car
= Initial Velocity of first car = 14 m/s
= Initial Velocity of second car = 0 m/s
= Final Velocity of first car = -2 m/s
= Final Velocity of second car
For perfectly elastic collision

Applying in the next equation


Mass of second car = 160 kg
Velocity of second car = 12 m/s
Answer:
L = 1.11 x
m, is the length of piece of 20 cm wide Aluminum foil to make capacitor large enough to hold 52000 J of energy.
Explanation:
Solution:
Data Given:
Heat Energy = 52000 J
Dielectric Constant of the plastic Bag = 3.7 = K
Thickness = 2.6 x
m =d
V = 610 volts
A = width x Length
width = 20 cm = 20 x
m
Length = ?
So,
we know that,
U = 1/2 C Δ
U = 52000 J
C = ?
V = 610 volts'
So,
U = 1/2 C Δ
52000 J = (0.5) x (C) x (
)
C = 0.28 F
And we also know that,
C = 
E = 8.85 x 
K = 3.7
A = 0.20 x L
d = 2.6 x
m
Plugging in the values into the formula, we get:
0.28 = 
Solving for L, we get:
L = 1.11 x
m,
is the length of piece of 20 cm wide Aluminum foil to make capacitor large enough to hold 52000 J of energy.
D. Destructive interference. An easy way to think about it is the waves are opposite each other, so they essentially cancel each other out, or make an effort to.
Am sorry what can you be more specific