1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olganol [36]
3 years ago
15

Maria formed when asteroids punctured the moon’s surface, allowing magma to bleed out and create _____.

Physics
2 answers:
vivado [14]3 years ago
5 0

extensive lava flow.


alekssr [168]3 years ago
4 0
Extensive lava flows
You might be interested in
Given a 3.00 μF capacitor, a 7.75 μF capacitor, and a 5.00 V battery, find the charge on each capacitor if you connect them in t
USPshnik [31]

Answer:

a) Q1= Q2= 11.75×10^-6Coulombs

b) Q1 =15×10^-6coulombs

Q2 = 38.75×10^-6coulombs

Explanation:

a) For a series connected capacitors C1 and C2, their equivalent capacitance C is expressed as

1/Ct = 1/C1 + 1/C2

Given C1 = 3.00 μF C2 = 7.75μF

1/Ct = 1/3+1/7.73

1/Ct = 0.333+ 0.129

1/Ct = 0.462

Ct = 1/0.462

Ct = 2.35μF

V = 5.00Volts

To calculate the charge on each each capacitors, we use the formula Q = CtV where Cf is the total equivalent capacitance

Q = 2.35×10^-6× 5

Q = 11.75×10^-6Coulombs

Since same charge flows through a series connected capacitors, therefore Q1= Q2=

11.75×10^-6Coulombs

b) If the capacitors are connected in parallel, their equivalent capacitance will be C = C1+C2

C = 3.00 μF + 7.75 μF

C = 10.75 μF

For 3.00 μF capacitance, the charge on it will be Q1 = C1V

Q1 = 3×10^-6 × 5

Q1 =15×10^-6coulombs

For 7.75 μF capacitance, the charge on it will be Q2 = 7.75×10^-6×5

Q2 = 38.75×10^-6coulombs

Note that for a parallel connected capacitors, same voltage flows through them but different charge, hence the need to use the same value of the voltage for both capacitors.

7 0
3 years ago
When light waves travel, they _____.
Sedbober [7]
I think the answer is d!
8 0
4 years ago
Read 2 more answers
Explain Why a flying aeroplane has more Kinetic Energy than a flying insect?
Airida [17]

Answer:

Why do insects fly so high?

Because the angle of attack is so high, a lot of momentum is transferred downward into the flow. These two features create a large amount of lift force as well as some additional drag. The important feature, however, is the lift.

Why an Aeroplane flying has kinetic  

A flying aeroplane has potential energy has it flies above the ground level. And since the aeroplane is flying motion is associated with it and thus possesses kinetic energy. Hence a flying aeroplane has both potential and kinetic energ

Explanation:

5 0
3 years ago
An attacker at the base of a castle wall 3.65 m high throws a rock straight up with speed 7.4m/s from a height of 1.55m above th
Natali5045456 [20]

a) Yes, the rock will reach the top

b) The final speed is 3.7 m/s

c) The change in speed is 2.4 m/s

d) The change in speed in the two situations do not agree

e) Because the kinetic energy depends quadratically on the speed, K\propto v^2

Explanation:

a)

The mechanical energy of the rock at the moment it is thrown from the ground is equal to the sum of its kinetic energy and its potential energy:

E=KE_i + PE_i = \frac{1}{2}mu^2 + mgh_i

where

m is the mass of the rock

u = 7.4 m/s is the inital speed

g=9.8 m/s^2 is the acceleration of gravity

h_i = 1.55 m is the initial height of the rock

Substituting, we find the initial mechanical energy of the rock

E=\frac{1}{2}m(7.4)^2 + m(9.8)(1.55)=42.6m [J]

In order to reach the top of the castle, the rock should have a mechanical energy of at least

E' = mgh'

where

h' = 3.65 m is the heigth of the top

Substituting,

E'=m(9.8)(3.65)=35.6m [J]

Since E > E', it means that the rock has enough mechanical energy to reach the top.

b)

The final mechanical energy of the rock at the top is

E=mgh'+ \frac{1}{2}mv^2 (1)

where:

v is the final speed of the rock at the top

Since the mechanical energy is conserved, this should be equal to the initial mechanical energy:

E=42.6 m [J] (2)

Therefore, equating (1) and (2), we can find the final speed of the rock:

mgh' + \frac{1}{2}mv^2 = 42.6m\\v=\sqrt{2(42.6-gh')}=\sqrt{2(42.6-(9.8)(3.65))}=3.7 m/s

c)

Since the motion of the rock is a free fall motion (constant acceleration equal to the acceleration of gravity), we can use the following suvat equation:

v^2 - u^2 = 2as

where

v is the final speed, at the bottom

u = 7.4 m/s is the initial speed of the rock, at the top

a=9.8 m/s^2 is the acceleration of gravity

s = 3.65 - 1.55 = 2.1 m is the vertical displacement of the rock

Solving for v, we find the final speed:

v=\sqrt{u^2+2as}=\sqrt{7.4^2 + 2(9.8)(2.1)}=9.8 m/s

Therefore, the change in speed is

\Delta v = v-u = 9.8 - 7.4 =2.4 m/s

d)

In the first situation (rock thrown upward), we have:

u = 7.4 m/s (initial speed)

v = 3.7 m/s (final speed)

So the change in speed is

\Delta v = v-u =3.7 - 7.4 = -3.7 m/s

While the change in speed in the second situation (rock thrown downward) is

\Delta v = 2.4 m/s

Therefore, we see that their magnitudes do not agree.

e)

In both situations, the change in kinetic energy of the rock is equal in magnitude to the change in gravitational potential energy, since the total mechanical energy is conserved.

The change in gravitational potential energy in the two situations is the same (because the change in height is the same), therefore the change in kinetic energy in the two situations is also the same.

However, the kinetic energy of the rock is not directly proportional to the speed, but to the square of the speed:

K\propto v^2

Since the initial speed is the same for both situation (7.4 m/s), but the change in kinetic energy has opposite sign in the two situations (negative when the rock is thrown upward, positive when thrown downward), the situation is not symmetrical, therefore in order to have the same magnitude of change in the kinetic energy, the change in speed must be larger when the kinetic energy involved is lower, so in the first situation.

Learn more about kinetic energy and about potential energy:

brainly.com/question/6536722

brainly.com/question/1198647

brainly.com/question/10770261

#LearnwithBrainly

6 0
4 years ago
Based on its location on the periodic table, an element that is not naturally occurring is?​
Scorpion4ik [409]

this is a link to a web sight with a diagram to help you

https://www.google.com/url?sa=i&source=images&cd=&ved=2ahUKEwjw4v7knNDgAhVyUN8KHWgWD-wQjRx6BAgBEAU&url=%2Furl%3Fsa%3Di%26source%3Dimages%26cd%3D%26ved%3D%26url%3Dhttps%253A%252F%252Ffuturism.com%252Fwhere-do-all-the-elements-come-from%26psig%3DAOvVaw19_FOCuWs_nMsyY1YT0Da-%26ust%3D1550955269844922&psig=AOvVaw19_FOCuWs_nMsyY1YT0Da-&ust=1550955269844922

7 0
3 years ago
Other questions:
  • The engineer determines that the machine increased at a constant rate the disk’s angular speed from 100 rad/s to 300 rad/s over
    9·1 answer
  • One. Possible explanation for the fact that some simple one cell organism did not evolve into complex multicellular organisms is
    9·1 answer
  • According to the uncertainty principle, if the position of a moving particle is known, what other quantity cannot be known?
    7·1 answer
  • A pitched ball is hit by a batter at a 47◦ angle. It just clears the outfield fence, 98 m away. The acceleration of gravity is 9
    9·1 answer
  • Is a snowflake falling and then melting then getting condescend and then evaporates back into the air a example of the 3rd law o
    5·1 answer
  • The specific heat of gold is 0.031 calories/gram°C and the specific heat of silver is 0.057 calories/gram°C. If equal amounts of
    9·1 answer
  • A device designed to shoot projectiles consists of a spring with spring constant kmewtons/meter that has been compressed Δx mete
    15·1 answer
  • How do you calculate area when pressure and force are given to you
    12·2 answers
  • Why do i look ugly in some mirrors but pretty in others? Which is more accurate?​
    13·2 answers
  • You are thinking about adding a part-time job to your business? You could pay the employees the $6.50 per hour. How much would y
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!