1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AVprozaik [17]
2 years ago
6

the video identifies the force pair produced when an apple falls through the air. which force belongs in a free-body diagram of

the apple?
Physics
1 answer:
trapecia [35]2 years ago
6 0

The free-body diagram of an apple falling through the air has weight of the apple pointing downwards and the air-resistance on the apple acting upwards.

When an object falls from up to the ground, the object falls under in the influence of acceleration due to gravity.

The vertical component of the force on the apple as it falls trough the air is given as;

∑Fy = 0

Fₙ - W = 0

Fₙ = W

where;

  • <em>Fₙ is the frictional force on the apple acting upwards</em>
  • <em>W is the weight of the apple acting downwards</em>

The free-body diagram of the apple is represented as follows;

                                         ↑ Fₙ

                                         Ο

                                         ↓ W

Thus, the free-body diagram of an apple falling through the air has weight of the apple pointing downwards and the air-resistance on the apple acting upwards.

Learn more here:brainly.com/question/18770265

You might be interested in
In a pressure cooker, a lid is screwed tightly onto a pot so that the air pressure in the pot is increased. What effect, if any,
Andreyy89
It will increase the temp
8 0
3 years ago
Read 2 more answers
Which phrase describes the thermal energy of a sample of matter?
fiasKO [112]

Answer:

where are the phrase's?

5 0
3 years ago
Astronomers discover an exoplanet, a planet obriting a star other than the Sun, that has an orbital period of 3.27 Earth years i
Naddik [55]

Answer:

  r = 3.787 10¹¹ m

Explanation:

We can solve this exercise using Newton's second law, where force is the force of universal attraction and centripetal acceleration

    F = ma

    G m M / r² = m a

The centripetal acceleration is given by

    a = v² / r

For the case of an orbit the speed circulates (velocity module is constant), let's use the relationship

    v = d / t

The distance traveled Esla orbits, in a circle the distance is

    d = 2 π r

Time in time to complete the orbit, called period

     v = 2π r / T

Let's replace

    G m M / r² = m a

    G M / r² = (2π r / T)² / r

    G M / r² = 4π² r / T²

    G M T² = 4π² r3

     r = ∛ (G M T² / 4π²)

Let's reduce the magnitudes to the SI system

     T = 3.27 and (365 d / 1 y) (24 h / 1 day) (3600s / 1h)

     T = 1.03 10⁸ s

Let's calculate

      r = ∛[6.67 10⁻¹¹ 3.03 10³⁰ (1.03 10⁸) 2) / 4π²2]

      r = ∛ (21.44 10³⁵ / 39.478)

      r = ∛(0.0543087 10 36)

      r = 0.3787 10¹² m

      r = 3.787 10¹¹ m

7 0
3 years ago
You want to produce three 2.00-mm-diametercylindrical wires, each with a resistance of 1.00 Ω at room temperature. One wire is g
Vlada [557]

Answer:

(a) L =  128.75 m

(b) L =  182.56 m

(c) L =  114.28 m

(d) Mass of Gold = 7.68 kg = 7680 gram

(e) Cost of Gold Wire = $ 307040

Explanation:

The resistance of the wire is given as:

R = ρL/A

where,

R = Resistance

ρ = resistivity

L = Length

A = cross-sectional area

(a)

For Gold Wire:

ρ = 2.44 x 10⁻⁸ Ω.m

A = πd²/4 = π(2 x 10⁻³ m)²/4 = 3.14 x 10⁻⁶ m²

R = 1 Ω

Therefore,

1 Ω = (2.44 x 10⁻⁸ Ω.m)L/(3.14 x 10⁻⁶ m²)

L = (1 Ω)(3.14 x 10⁻⁶ m²)/(2.44 x 10⁻⁸ Ω.m)

<u>L =  128.75 m</u>

<u></u>

(b)

For Copper Wire:

ρ = 1.72 x 10⁻⁸ Ω.m

A = πd²/4 = π(2 x 10⁻³ m)²/4 = 3.14 x 10⁻⁶ m²

R = 1 Ω

Therefore,

1 Ω = (1.72 x 10⁻⁸ Ω.m)L/(3.14 x 10⁻⁶ m²)

L = (1 Ω)(3.14 x 10⁻⁶ m²)/(1.72 x 10⁻⁸ Ω.m)

<u>L =  182.56 m</u>

<u></u>

(c)

For Aluminum Wire:

ρ = 2.75 x 10⁻⁸ Ω.m

A = πd²/4 = π(2 x 10⁻³ m)²/4 = 3.14 x 10⁻⁶ m²

R = 1 Ω

Therefore,

1 Ω = (2.75 x 10⁻⁸ Ω.m)L/(3.14 x 10⁻⁶ m²)

L = (1 Ω)(3.14 x 10⁻⁶ m²)/(2.75 x 10⁻⁸ Ω.m)

<u>L =  114.28 m</u>

<u></u>

(d)

Density = Mass/Volume

Mass = (Density)(Volume)

Volume of Gold = AL = (3.14 x 10⁻⁶ m²)(128.75 m) = 4.04 x 10⁻⁴ m³

Therefore,

Mass of Gold = (1.9 x 10⁴ kg/m³)(4.04 x 10⁻⁴ m³)

<u>Mass of Gold = 7.68 kg = 7680 gram</u>

<u></u>

(e)

Cost of Gold Wire = (Unit Price of Gold)(Mass of Gold)

Cost of Gold Wire = ($ 40/gram)(7680 grams)

<u>Cost of Gold Wire = $ 307040</u>

7 0
3 years ago
Since all stars begin their lives with the same basic composition, what characteristic most determines how they will differ?
Dafna1 [17]
4. Mass they are formed with
7 0
3 years ago
Other questions:
  • Identify the type of electrification of the road
    11·1 answer
  • How does gravity make a star
    14·1 answer
  • A girl and boy pull in opposite directions on a stuffed animal. The girl exerts a force of 3.5 N. The mass of the stuffed animal
    13·2 answers
  • When you blow up a balloon, what happens to the volume of air inside the balloon ?
    8·1 answer
  • Some simple Machines decrease mechanical advantage and are used to_______.
    11·2 answers
  • Igneous rocks weather more easily than sedimentary rocks.
    11·1 answer
  • A 64 kg cross-country skier glides over snow. Thecoefficient
    11·1 answer
  • PLEASE HELP!!
    5·1 answer
  • Energy is the energy an object has because it is in motion. *
    9·1 answer
  • 3. What is the gravitational force between a 70 kg physics student and her 1 kg textbook, at a distance of 1 meter? (This number
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!