Answer:
Wave-cut cliff, sea arch, sea stacks
Explanation:
The effect of a wave erosion is made obvious by the structures formed by the wave action.
The high areas of land adjacent to the incoming wave develop the early features or the formation of wave action, which includes the <em>wave-cut cliff</em>
The continuous undercutting of the cliff by the wave results in the formation of the <em>wave cut platform</em>
The effect of the wave further on a cliff, results in the formation of a sea arch and finally a <em>sea stack</em>
Therefore, the correct sequence is the wave-cut cliff, sea arch, sea stacks
Answer:
The moment of inertia I is
I = 2.205x10^-4 kg/m^2
Explanation:
Given mass m = 0.5 kg
And side lenght = 0.03 m
Moment of inertia I = mass x radius of rotation squared
I = mr^2
In this case, the radius of rotation is about an axis which is both normal (perpendicular) to and through the center of a face of the cube.
Calculating from the dimensions of the the box as shown in the image below, the radius of rotation r = 0.021 m
Therefore,
I = 0.5 x 0.021^2 = 2.205x10^-4 kg/m^2
Answer:
8.333*10^-6 ohms
Explanation:
Resistivity of a material is expressed as;
p = RA/l
R is the resistance of the material
A is the cross sectional area
l is the length of the material
Given
R = 5 ohms
A = 0.5mm^2
A = 5 * 10^-7m^2
l = 30cm = 0.3m
Substitute into the formula;
p = (5 * 5 * 10^-7m^2)/0.3
p = 25 * 10^-7/0.3
p = 0.0000025/0.3
p = 8.333*10^-6
Hence its resistivity at 20 degrees Celsius is 8.333*10^-6 ohms
answer: transverse and longitudinal