Answer: The gravitational
Explanation: The student is pushing the box so u have to have gravitational force so it could move
Answer:
4.6 m
Explanation:
First of all, we can find the frequency of the wave in the string with the formula:

where we have
L = 2.00 m is the length of the string
T = 160.00 N is the tension
is the mass linear density
Solving the equation,

The frequency of the wave in the string is transmitted into the tube, which oscillates resonating at same frequency.
The n=1 mode (fundamental frequency) of an open-open tube is given by

where
v = 343 m/s is the speed of sound
Using f = 37.3 Hz and re-arranging the equation, we find L, the length of the tube:

Answer:

Explanation:
<u>Net Forces and Acceleration</u>
The second Newton's Law relates the net force
acting on an object of mass m with the acceleration a it gets. Both the net force and the acceleration are vector and have the same direction because they are proportional to each other.

According to the information given in the question, two forces are acting on the swimming student: One of 256 N pointing to the south and other to the west of 104 N. Since those forces are not aligned, we must add them like vectors as shown in the figure below.
The magnitude of the resulting force
is computed as the hypotenuse of a right triangle


The acceleration can be obtained from the formula

Note we are using only magnitudes here



Energy stored in a capacitor is Electric Potential Energy. Capacitor is device used for storing energy. The work done to charge is a capacitor is stored in it in the form of Electrical potential energy. Electrical potential energy is defined as capacity to do work due to the position change. For example, we know fans have capacitor installed in it. When we turn off the fan, it continue moving using the electrical energy stored in the capacitor.