Great amounts of atomic energy are released when
a _______reaction occurs.
Great amounts of atomic energy
are released when a chemical reaction occurs. The process can be an exothermic reaction
or endothermic reaction depending on the substances involved in the reaction.
Answer:
-85 °C
Explanation:
O and S are in the same group( Group 16). Since S is below O it's atomic mass is higher than O. So molar mass of H2S is higher than H2O. The strength of Vanderwaal Interactions ( London dispersion forces) increases when the molar mass increases. However, only H2O can form H bonds with each other. This is because electronegativity of O is higher than S and therefore H in H2O has a higher partial positive charge than H of H2S.
H bond dominate among these 2 types of forces so the strength of attractions between molecules is higher in H2O than H2S. Therefore more energy should be supplied for H2O to break inter
molecular forces and convert from solid to liquid state than H2S. So mpt of H2O must be higher than that of H2S.
To explain your first paragraph which includes your thesis. The second paragrph supports your first pragraph
C. Ta
Tantalum is an element with an atomic number of 63 and its electronic configuration is:
[Xe] 4f¹⁴ 5d³ 6s²
Answer:
0.641 moles of ethane
Explanation:
Based on the equation:
C2H6(g) + 7/2O2(g) → 2CO2(g) + 3H2O(l)
We can determine ΔH of reaction using Hess's law. For this equation:
<em>Hess's law: ΔH products - ΔH reactants</em>
ΔH = {2ΔHCO2 + 3ΔHH2O} - {ΔHC2H6}
<em>Pure monoatomic substances have a ΔH = 0kJ/mol; ΔHO2 = 0kJ/mol</em>
<em />
ΔH = {2*-393.5kJ/mol + 3*-285.8kJ/mol} - {-84.7kJ/mol}
ΔH = -1559.7kJ/mol
That means when 1 mole of ethane is in combustion there are released 1559.7kJ of heat. To produce 1.00x10³kJ there are needed:
1.00x10³kJ * (1mole ethane / 1559.7kJ) =
<h3>0.641 moles of ethane</h3>