Answer:
Balancing chemical equation means making a number of atoms or molecules equal on both sides. In other words, this means that the number of atoms and molecules of each reacting element needs to be the same as the number of atoms and molecules of those elements in the product.
Our reaction is:
AlBr3 + K2SO4 -> KBr + Al2(SO4)3
and we need to balance it.
Since there are 3 molecules of SO4 in the product we need to put 3 before the reactant K2SO4. There are also 2 atoms of Al in the product, so we need to put 2 in front AlBr3. Now we have 6 atoms of K and Br on the left side, so we need to put 6 in front of KBr in the product.
So, our balanced equation will look like this:
2AlBr3 + 3K2SO4 -> 6KBr + Al2(SO4)3
Answer
2.7956 * 10^19 photons
Givens
- Wavelength = λ = 525 * 10^-9 meters [1 nmeter = 1*10^-9 meters]
- c = 3 * 10^8 meters
- E = ???
- W = 100 watts
- t = 1 second
- h= plank's Constant = 6.26 * 10^-34 J*s
Formula
E = h * c / λ
W = E / t
Solution
E = 6.26 * 10^-34 j*s * 3 * 10^8 m/s /525 * 10^-9 (m)
The meters cancel out. So do the seconds. You are left with Joules as you should be.
E = 3.577 * 10^-18 Joules
What you have found is the energy of 1 photon.
Now you have to find the Joules from the watts.
W = E/t
100 * 1 second = 100 joules
1 photon contains 3.577 * 10 ^ - 18 Joules
x photon = 100 joules
1/x = 3.577 * 10^-18 / 100 Cross multiply
100 = 3.577 * 10 ^ - 18 * x Divide both sides by 3.577 * 10 ^ - 18
100/3.577 * 10 ^ - 18 = 3.577 * 10 ^ - 18x / 3.577 * 10 ^ - 18
2.7956 * 10^19 photons = x
Answer:
HCN < HOCl < HF
Explanation:
The larger the Kₐ value, the stronger the acid.
6.2 × 10⁻¹⁰ < 4.0 × 10⁻⁸ < 6.3 × 10⁻⁴
HCN < HOCl < HF
weakest stronger strongest
Answer:
I think its D
Explanation:
.........................