Answer:
Look at your periodic table
Explanation:
It tells you everything like Potasium 1 and 1 ox and 1 hydrogen
I think because its the only one to be liquid at normal temperatures.
Answer:
19.79%
Explanation:
mass % = (mass solute / total mass) * 100
total mass = 129.54 + 525 = 654.54
solute = C6H12O6
(129.54/654.54) = .1979
.1979 * 100 = 19.79%
Iodic acid partially dissociates into H+ and IO3-
Assuming that x is the concentration of H+ at equilibrium, and sine the equation says the same amount of IO3- will be released as that of H+, its concentration is also X. The formation of H+ and IO3- results from the loss of HIO3 so its concentration at equilibrium is 0.20 M - x
Ka = [H+] [IO3-] / [HIO3];
<span>Initially, [H+] ≈ [IO3-] = 0 and [HIO3] = 0.20; </span>
<span>At equilibrium [H+] ≈ [IO3-] = x and [HIO3] = 0.20 - x; </span>
<span>so 0.17 = x² / (0.20 - x); </span>
<span>Solving for x using the quadratic formula: </span>
<span>x = [H+] = 0.063 M or pH = - log [H+] = 1.2.</span>