Answer:
0.0327 m
Explanation:
m = 2 kg
ω = 24 rad/s
A = 0.040 m
Let at position y, the potential energy is twice the kinetic energy.
The potential energy is given by
U = 1/2 m x ω² x y²
The kinetic energy is given by
K = 1/2 m x ω² x (A² - y²)
Equate both the energies as according to the question
1/2 m x ω² x y² = 2 x 1/2 m x ω² x (A² - y²)
y² = 2 A² - 2 y²
3y² = 2A²
y² = 2/3 A²
y = 0.82 A = 0.82 x 0.040 = 0.0327 m
Answer:
from W-Z.. i think on a swing you get your most potential energy at W and Z is where you go up so Z would be where the kinetic energy increased and W is where potential energy decrease
Explanation:
hope this helps
Answer:
0 N, 3.49 m/s
Explanation:
Draw a free body diagram for the bucket at the top of the swing. There are two forces acting on the bucket: weight and tension, both downwards.
If we take the sum of the forces in the radial direction, where towards the center is positive:
∑F = ma
W + T = m v² / r
The higher the velocity that Rony swings the bucket, the more tension there will be. The slowest he can swing it is when the tension is 0.
W = m v² / r
mg = m v² / r
g = v² / r
v = √(gr)
Given that r = 1.24 m:
v = √(9.8 m/s² × 1.24 m)
v = 3.49 m/s
Answer:
During stage 3 - late expanding (of demogrpahic transition model)
Explanation:
During stage 3, birth rate begins to decline as infant mortality is lower and women have more access to education, family planning, and contraceptives. Children are not needed as "free labor" as they might have been in earlier stages.