First, we need to convert the pressure in SI units. Keeping in mind that

:

The initial and final volume of the gas are (keeping in mind that

):


So, the work done on the gas by the surrounding is

And the final positive sign means that this work corresponds to an increase in internal energy of the gas.
Answer:
88 m/s
Explanation:
To solve the problem, we can use the following SUVAT equation:

where
v is the final velocity
u is the initial velocity
a is the acceleration
d is the distance covered
For the car in this problem, we have
d = 484 m is the stopping distance
v = 0 is the final velocity
is the acceleration
Solving for u, we find the initial velocity:

Melting, boiling, and freezing are state changes!
Hope this helps! Any questions please just ask! Thank you so much!
Answer:
The magnitude of the force of friction equals the magnitude of my push
Explanation:
Since the crate moves at a constant speed, there is no net acceleration and thus, my push is balanced by the frictional force on the crate. So, the magnitude of the force of friction equals the magnitude of my push.
Let F = push and f = frictional force and f' = net force
F - f = f' since the crate moves at constant speed, acceleration is zero and thus f' = ma = m (0) = 0
So, F - f = 0
Thus, F = f
So, the magnitude of the force of friction equals the magnitude of my push.
Answer:
Either Answer you Put is fine i put one as an answer and the other is the sample response and got it right.
My Answer: rather than typical sea floor rock, which had been shocked, melted, and ejected to the surface in minutes, and evidence of colossal seawater movement directly afterwards from sand deposits. Crucially the cores also showed a near complete absence of gypsum, a sulfate-containing rock, which would have been vaporized and dispersed as an aerosol into the atmosphere, confirming the presence of a probable link between the impact and global longer-term effects on the climate and food chain.
Sample Response:
Samples from the Western Hemisphere contained significantly higher amounts of shock-fractured quartz. This led Walter and Luis Alvarez to hypothesize that the asteroid impact site was in the Western Hemisphere.
Explanation: