(a) Force between the two charges
The electrostatic force between the two charges is given by:

where k is the Coulomb's constant, q1 and q2 the two charges, r their separation.
In this problem:



Substituting into the equation, we find

(b) direction of particle q2
Particle q2 wants to move in the direction of the force acting on it. The direction of the force depends on the relative sign of the two charges: like charges attract each other, opposite charges repel each other. In this case, the two charges are both positive, so they repel each other and q2 tends to move away from particle q1.
Answer:
The current through the inductor at the end of 2.60s is 9.7 mA.
Explanation:
Given;
emf of the inductor, V = 41.0 mV
inductance of the inductor, L = 13 H
initial current in the inductor, I₀ = 1.5 mA
change in time, Δt = 2.6 s
The emf of the inductor is given by;

Therefore, the current through the inductor at the end of 2.60 s is 9.7 mA.
Answer:
Explanation:
charge, q = 1.6 x 10^-19 C
distance, r = 911 nm = 911 x 10^-9 m
The Coulomb's force is given by


F = 2.78 x 10^-16 N
The force between the electron and the proton is 2.78 x 10^-16 N.
Answer:
interna
Explanation:
please mark as brainllest
Answer:
Explanation:
Force Mass * acceleration
F = ma
a = F/m
Sum of force = 16.3N - 15.8N = 0.5N
Mass = 0.62kg
Substitute
a = 0.5/ * 0.62
a = 0.81m/s²
The acceleration of the toy is 0.81m/s²