Answer:
Examples of Newton's third law of motion are ubiquitous in everyday life. For example, when you jump, your legs apply a force to the ground, and the ground applies and equal and opposite reaction force that propels you into the air. Engineers apply Newton's third law when designing rockets and other projectile devices.
Answer:
Explanation:
v = u +at
u = 0
a = 2.3 m /s²
t = 20 s
v = 2.3 x 20
= 46 m /s
Distance covered under acceleration of 2.3 m/s²
s = ut + 1/2 at²
= 0 + .5 x 2.3 x 20²
= 460 m
After that it moves under free fall ie g acts on it downwards .
v² = u² - 2gh , h is height moved by it under free fall
0 = 46² - 2 x 9.8 h
h = 107.96 m
Total height attained
= 460 + 107.96
= 567.96 m
b ) At its highest point ,it stops so its velocity = 0
c ) rocket's acceleration at its highest point = g = 9.8 downwards .
At highest point , it is undergoing free fall so its acceleration = g
Hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
the independent variable is what you're testing or changing in an experiment, so the answer is the temperature of the ball when its dropped.
i hope that helped <3