Answer:
1.343 atm
Explanation:
The mass of water above 1 square meter of swimming pool bottom is ...
M = (3.5 m)·(1000 kg/m^3) = 3500 kg/m^2
Then the force exerted by the water on the pool bottom is ...
F = Mg = (3500 kg/m^2)(9.8 m/s^2) = 34300 N/m^2 = 34300 Pa
Compared with atmospheric pressure, this is ...
34,300/10^5 = 0.343 . . . . atmospheres
Added to the atmospheric pressure on the water's surface, the total pressure on the pool bottom is 1.343 atmospheres.
<h2><em>the correct answer is </em></h2><h2><em>A) 111.36 seconds</em></h2><h2><em>HOPE IT HELPS (◕‿◕✿) </em></h2>
The answer is D. When you melt something, it only changes its physical change.
Answer:
The density is: 
Explanation:
Recall that density is defined as the quotient of the object's mass divided by volume. So, we calculate the volume of the 3 cm side cube:

then the density becomes:

The pressure generated by the piston at the input cylinder must be:
p = F / A = 250 lb-f / 30 in^2
The pressure generated by the piston at the output cylinders is p = F / A = 775 lb-f / A.
Pascal principle rules that both pressures are equal, so:
250 lb-f / 30 in^2 = 775 lb-f / A => A = 775 lb-f * 30 in^2 / 250 lb-f = 93 in^2
Gvien that each output cylinder are 30in^2 you need 93 / 30 = 3.1 cylinders.
Which means that at least you need 4 cylinders to generate a force at least of 775 lb-f.
Answer: 4