Answer : The mass of ice melted can be, 3.98 grams.
Explanation :
First we have to calculate the moles of ice.

where,
Q = energy absorbed = 27.2 kJ
= enthalpy of fusion of ice = 6.01 kJ/mol
n = moles = ?
Now put all the given values in the above expression, we get:


Now we have to calculate the mass of ice.

Molar mass of ice = 18.02 g/mol

Thus, the mass of ice melted can be, 3.98 grams.
Answer: 1.33
Explanation:
We would apply Snell's law which is expressed as
niSinθi = nrSinθr
where
θi = angle of incidence
θr = angle of refraction
ni = index of refraction of the incident medium(air)
nr = index of refraction of the refractive medium(liquid in this case)
From the information given,
ni = 1(index for air)
θi = 37
θr = 27
By substituting these values into the formula, we have
1 * sin37 = nr * sin27
nr = sin37/sin27
nr = 1.33
The index of the liquid is 1.33
Answer:
Explanation:
Block A sits on block B and force is applied on block A . Block A will experience two forces 1) force P and 2 ) friction force in opposite direction of motion . Block B will experience one force that is force of friction in the direction of motion .
Let force on block A be P . friction force on it will be equal to kinetic friction, that is μ mg , where μ is coefficient of friction and m is mass of block A
friction force = .4 x 2.5 x 9.8
= 9.8 N
net force on block A = P - 9.8
acceleration = ( P - 9.8 ) / 2.5
force on block B = 9.8
acceleration = force / mass
= 9.8 / 6
for common acceleration
( P - 9.8 ) / 2.5 = 9.8 / 6
( P - 9.8 ) / 2.5 = 1.63333
P = 13.88 N .
When it gets hot, rails expand. The gaps in the track allow for it to expand straight, but if there were no gaps, it could expand in unexpected directions, so it could be very dangerous for a train to go over it because they could be bent.